Least-squares solutions of generalized inverse eigenvalue problem over Hermitian–Hamiltonian matrices with a submatrix constraint
In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given X ∈ C n × m , Λ = diag ( λ 1 , λ 2 , … , λ m ) ∈ C m × m , find A ∗ , B ∗ ∈ C n × n , such that ‖ A X - B X Λ ‖ is minimi...
Uložené v:
| Vydané v: | Computational & applied mathematics Ročník 37; číslo 1; s. 593 - 603 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.03.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0101-8205, 2238-3603, 1807-0302 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a gradient-based iterative algorithm is proposed for finding the least-squares solutions of the following constrained generalized inverse eigenvalue problem: given
X
∈
C
n
×
m
,
Λ
=
diag
(
λ
1
,
λ
2
,
…
,
λ
m
)
∈
C
m
×
m
, find
A
∗
,
B
∗
∈
C
n
×
n
, such that
‖
A
X
-
B
X
Λ
‖
is minimized, where
A
∗
,
B
∗
are Hermitian–Hamiltonian except for a special submatrix. For any initial constrained matrices, a solution pair
(
A
∗
,
B
∗
)
can be obtained in finite iteration steps by this iterative algorithm in the absence of roundoff errors. The least-norm solution can be obtained by choosing a special kind of initial matrix pencil. In addition, the unique optimal approximation solution to a given matrix pencil in the solution set of the above problem can also be obtained. A numerical example is given to show the efficiency of the proposed algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0101-8205 2238-3603 1807-0302 |
| DOI: | 10.1007/s40314-016-0363-3 |