Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal
Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after stora...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 115; číslo 7; s. 070502 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
14.08.2015
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing. |
|---|---|
| AbstractList | Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing. Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing. Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152+ or -0.033). The fidelity of the memory process is 0.993+ or -0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare- earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing. |
| ArticleNumber | 070502 |
| Author | Xu, Jin-Shi Han, Yong-Jian Hua, Yi-Lin Zhou, Zong-Quan Guo, Guang-Can Li, Chuan-Feng Chen, Geng Liu, Xiao |
| Author_xml | – sequence: 1 givenname: Zong-Quan surname: Zhou fullname: Zhou, Zong-Quan – sequence: 2 givenname: Yi-Lin surname: Hua fullname: Hua, Yi-Lin – sequence: 3 givenname: Xiao surname: Liu fullname: Liu, Xiao – sequence: 4 givenname: Geng surname: Chen fullname: Chen, Geng – sequence: 5 givenname: Jin-Shi surname: Xu fullname: Xu, Jin-Shi – sequence: 6 givenname: Yong-Jian surname: Han fullname: Han, Yong-Jian – sequence: 7 givenname: Chuan-Feng surname: Li fullname: Li, Chuan-Feng – sequence: 8 givenname: Guang-Can surname: Guo fullname: Guo, Guang-Can |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26317702$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFP3DAQha2KCnYpfwHl2EtgJk5sR-oFbSkgLaJQEEfL8U6WVIlDbafS_nu82kWqemlPo5n53oz03pwduNERY6cIZ4jAz7-_bMID_V5SjGlQnYGECooPbIYg61wilgdsBsAxrwHkEZuH8BMAsBDqkB0VgqOUUMzY8_1kXJyG7EccvVlTNrbZ44snyr92A7nQjc702Z1vumj6_MKtp974_HZMu63q0kXj1j1t26xzmckWfhMS-ol9bE0f6GRfj9nTt8vHxXW-vLu6WVwsc8vLMuYrsCthSyGtKUyJ1JQGFBXYltXKiMYKUxFWbd2QglbVtuQgCLmCGinRLT9mn3d3X_34a6IQ9dAFS31vHI1T0CiVwBoq5P-BglJ1xZVM6OkenZqBVvrVd4PxG_3uWwK-7ADrxxA8tdomg2JyK3rT9RpBb2PSf8SUBpXexZTk4i_5-4d_CN8ARuKa_w |
| CitedBy_id | crossref_primary_10_1038_s41598_018_27888_y crossref_primary_10_1103_PhysRevLett_127_220502 crossref_primary_10_1002_qute_202300037 crossref_primary_10_1063_5_0183220 crossref_primary_10_1002_lpor_202100219 crossref_primary_10_1007_s11467_022_1240_8 crossref_primary_10_1016_j_scib_2022_11_007 crossref_primary_10_3390_sym16081053 crossref_primary_10_1103_PhysRevApplied_4_064011 crossref_primary_10_1063_1_4948519 crossref_primary_10_1103_PhysRevApplied_22_044019 crossref_primary_10_1364_PRJ_559202 crossref_primary_10_1038_s42005_021_00726_w crossref_primary_10_1016_j_jlumin_2018_05_041 crossref_primary_10_1038_ncomms13514 crossref_primary_10_1103_PhysRevApplied_18_024027 crossref_primary_10_1063_5_0199572 crossref_primary_10_1088_0256_307X_38_9_094203 crossref_primary_10_1088_1367_2630_aa4f38 crossref_primary_10_1038_s41598_020_72071_x crossref_primary_10_1038_s41467_017_02775_8 crossref_primary_10_1016_j_scib_2025_01_003 crossref_primary_10_1038_s41598_018_25592_5 crossref_primary_10_1103_PhysRevApplied_19_044072 crossref_primary_10_1038_s41534_023_00749_x crossref_primary_10_1016_j_scib_2019_09_006 crossref_primary_10_1088_0256_307X_38_4_044201 crossref_primary_10_1109_COMST_2021_3109944 crossref_primary_10_1038_s41467_018_05669_5 crossref_primary_10_1088_2058_9565_addd93 crossref_primary_10_1103_PhysRevA_108_L050601 crossref_primary_10_1063_1_4984206 crossref_primary_10_1016_j_physleta_2021_127295 crossref_primary_10_1063_5_0055428 crossref_primary_10_1116_5_0016007 crossref_primary_10_1016_j_physleta_2020_126780 crossref_primary_10_1038_s41377_019_0194_2 crossref_primary_10_1080_09500340_2016_1148212 crossref_primary_10_1021_acsnano_5c11498 crossref_primary_10_1364_PRJ_384449 crossref_primary_10_1038_s41586_021_03505_3 crossref_primary_10_1364_PRJ_537109 crossref_primary_10_1007_s44214_023_00044_y crossref_primary_10_1038_srep44934 crossref_primary_10_1088_1367_2630_aabe3b crossref_primary_10_1063_5_0179539 crossref_primary_10_1038_s42005_019_0201_1 crossref_primary_10_1364_PRJ_427745 crossref_primary_10_1093_nsr_nww051 crossref_primary_10_1038_lsa_2016_157 crossref_primary_10_1016_j_optcom_2022_129088 crossref_primary_10_1088_1361_6455_aa9b95 crossref_primary_10_1364_OL_562996 crossref_primary_10_1088_1674_1056_27_2_020303 crossref_primary_10_1088_1367_2630_18_1_013006 crossref_primary_10_1038_ncomms9652 crossref_primary_10_1063_5_0156874 crossref_primary_10_1515_nanoph_2024_0487 crossref_primary_10_1103_PhysRevApplied_14_054071 crossref_primary_10_1038_s41598_017_18229_6 crossref_primary_10_1002_lpor_202401759 crossref_primary_10_1038_s41534_024_00812_1 crossref_primary_10_1103_PhysRevA_111_052431 crossref_primary_10_1016_j_chip_2023_100081 crossref_primary_10_1103_8l9k_12k2 crossref_primary_10_1002_lpor_202300257 crossref_primary_10_1088_2040_8978_19_1_013001 crossref_primary_10_1140_epjd_s10053_024_00937_0 crossref_primary_10_1109_JLT_2021_3081727 crossref_primary_10_1038_ncomms11202 crossref_primary_10_1103_PhysRevLett_134_200801 |
| Cites_doi | 10.1103/PhysRevLett.93.053601 10.1103/PhysRevLett.114.230501 10.1364/JOSAB.31.000A20 10.1103/PhysRevLett.109.133601 10.1038/nature14025 10.1088/1367-2630/13/1/013013 10.1103/PhysRevA.66.012303 10.1103/PhysRevLett.113.053603 10.1103/PhysRevLett.108.190505 10.1016/j.jlumin.2011.12.036 10.1103/PhysRevA.45.8185 10.1038/nature09662 10.1103/PhysRevLett.114.050502 10.1103/PhysRevLett.103.110503 10.1103/PhysRevLett.88.040404 10.1103/PhysRevA.90.042301 10.1103/PhysRevLett.114.230502 10.1038/nphoton.2014.311 10.1103/PhysRevLett.91.227902 10.1103/PhysRevLett.93.080502 10.1103/PhysRevLett.111.033601 10.1103/RevModPhys.83.33 10.1038/nature09081 10.1364/OL.23.000636 10.1016/S0022-2313(02)00281-8 10.1103/PhysRevLett.98.190503 10.1103/PhysRevLett.108.263602 10.1038/nphoton.2011.213 10.1088/1367-2630/16/6/065019 10.1103/PhysRevB.58.5692 10.1103/PhysRevLett.98.060502 10.1103/PhysRevLett.98.203601 10.1088/1367-2630/8/5/075 10.1038/ncomms3781 10.1038/nphoton.2014.215 10.1109/TPAMI.2004.47 10.1038/ncomms3527 10.1103/PhysRevA.79.052329 10.1103/PhysRevLett.94.040501 10.1038/nphys919 10.1103/PhysRevLett.110.133604 10.1103/PhysRevLett.93.130503 10.1103/PhysRevLett.105.153601 10.1038/nphys1996 10.1088/1367-2630/17/2/023011 10.1103/PhysRevLett.81.5932 10.1038/nature09719 10.1038/nphoton.2013.355 10.1103/PhysRevLett.101.260502 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M |
| DOI | 10.1103/PhysRevLett.115.070502 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 26317702 10_1103_PhysRevLett_115_070502 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM 7X8 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c344t-d0cd6c467ca2a41eb4a08e21f45da6bc6a5e15f9be80f89c4306e138091e1ebf3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359437000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Fri Jul 11 11:43:55 EDT 2025 Fri Jul 11 09:02:34 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Sat Nov 29 01:46:12 EST 2025 Tue Nov 18 21:18:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | http://link.aps.org/licenses/aps-default-license |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-d0cd6c467ca2a41eb4a08e21f45da6bc6a5e15f9be80f89c4306e138091e1ebf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26317702 |
| PQID | 1708895387 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1786190513 proquest_miscellaneous_1708895387 pubmed_primary_26317702 crossref_citationtrail_10_1103_PhysRevLett_115_070502 crossref_primary_10_1103_PhysRevLett_115_070502 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Aug-14 |
| PublicationDateYYYYMMDD | 2015-08-14 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-Aug-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2015 |
| References | PhysRevLett.115.070502Cc34R1 PhysRevLett.115.070502Cc11R1 PhysRevLett.115.070502Cc53R1 PhysRevLett.115.070502Cc13R1 PhysRevLett.115.070502Cc38R1 PhysRevLett.115.070502Cc15R1 PhysRevLett.115.070502Cc36R1 PhysRevLett.115.070502Cc30R1 PhysRevLett.115.070502Cc51R1 PhysRevLett.115.070502Cc17R1 PhysRevLett.115.070502Cc19R1 PhysRevLett.115.070502Cc20R1 PhysRevLett.115.070502Cc45R1 PhysRevLett.115.070502Cc22R1 PhysRevLett.115.070502Cc43R1 PhysRevLett.115.070502Cc24R1 PhysRevLett.115.070502Cc49R1 PhysRevLett.115.070502Cc47R1 PhysRevLett.115.070502Cc41R1 PhysRevLett.115.070502Cc2R1 PhysRevLett.115.070502Cc4R1 PhysRevLett.115.070502Cc6R1 PhysRevLett.115.070502Cc28R1 PhysRevLett.115.070502Cc8R1 PhysRevLett.115.070502Cc33R1 PhysRevLett.115.070502Cc12R1 PhysRevLett.115.070502Cc31R1 PhysRevLett.115.070502Cc14R1 PhysRevLett.115.070502Cc37R1 PhysRevLett.115.070502Cc16R1 PhysRevLett.115.070502Cc35R1 PhysRevLett.115.070502Cc52R1 PhysRevLett.115.070502Cc50R1 PhysRevLett.115.070502Cc18R1 PhysRevLett.115.070502Cc39R1 PhysRevLett.115.070502Cc21R1 PhysRevLett.115.070502Cc44R1 PhysRevLett.115.070502Cc23R1 PhysRevLett.115.070502Cc42R1 PhysRevLett.115.070502Cc25R1 PhysRevLett.115.070502Cc48R1 PhysRevLett.115.070502Cc27R1 PhysRevLett.115.070502Cc46R1 PhysRevLett.115.070502Cc40R1 PhysRevLett.115.070502Cc1R1 PhysRevLett.115.070502Cc3R1 D. Meschede (PhysRevLett.115.070502Cc32R1) 2007 PhysRevLett.115.070502Cc5R1 PhysRevLett.115.070502Cc7R1 PhysRevLett.115.070502Cc29R1 PhysRevLett.115.070502Cc9R1 |
| References_xml | – ident: PhysRevLett.115.070502Cc17R1 doi: 10.1103/PhysRevLett.93.053601 – ident: PhysRevLett.115.070502Cc45R1 doi: 10.1103/PhysRevLett.114.230501 – ident: PhysRevLett.115.070502Cc30R1 doi: 10.1364/JOSAB.31.000A20 – ident: PhysRevLett.115.070502Cc19R1 doi: 10.1103/PhysRevLett.109.133601 – ident: PhysRevLett.115.070502Cc39R1 doi: 10.1038/nature14025 – ident: PhysRevLett.115.070502Cc38R1 doi: 10.1088/1367-2630/13/1/013013 – ident: PhysRevLett.115.070502Cc34R1 doi: 10.1103/PhysRevA.66.012303 – ident: PhysRevLett.115.070502Cc16R1 doi: 10.1103/PhysRevLett.113.053603 – ident: PhysRevLett.115.070502Cc42R1 doi: 10.1103/PhysRevLett.108.190505 – ident: PhysRevLett.115.070502Cc41R1 doi: 10.1016/j.jlumin.2011.12.036 – ident: PhysRevLett.115.070502Cc27R1 doi: 10.1103/PhysRevA.45.8185 – ident: PhysRevLett.115.070502Cc4R1 doi: 10.1038/nature09662 – ident: PhysRevLett.115.070502Cc6R1 doi: 10.1103/PhysRevLett.114.050502 – ident: PhysRevLett.115.070502Cc33R1 doi: 10.1103/PhysRevLett.103.110503 – ident: PhysRevLett.115.070502Cc36R1 doi: 10.1103/PhysRevLett.88.040404 – ident: PhysRevLett.115.070502Cc23R1 doi: 10.1103/PhysRevA.90.042301 – ident: PhysRevLett.115.070502Cc46R1 doi: 10.1103/PhysRevLett.114.230502 – ident: PhysRevLett.115.070502Cc48R1 doi: 10.1038/nphoton.2014.311 – ident: PhysRevLett.115.070502Cc24R1 doi: 10.1103/PhysRevLett.91.227902 – ident: PhysRevLett.115.070502Cc37R1 doi: 10.1103/PhysRevLett.93.080502 – ident: PhysRevLett.115.070502Cc11R1 doi: 10.1103/PhysRevLett.111.033601 – ident: PhysRevLett.115.070502Cc1R1 doi: 10.1103/RevModPhys.83.33 – ident: PhysRevLett.115.070502Cc31R1 doi: 10.1038/nature09081 – ident: PhysRevLett.115.070502Cc52R1 doi: 10.1364/OL.23.000636 – ident: PhysRevLett.115.070502Cc50R1 doi: 10.1016/S0022-2313(02)00281-8 – ident: PhysRevLett.115.070502Cc14R1 doi: 10.1103/PhysRevLett.98.190503 – ident: PhysRevLett.115.070502Cc9R1 doi: 10.1103/PhysRevLett.108.263602 – ident: PhysRevLett.115.070502Cc5R1 doi: 10.1038/nphoton.2011.213 – ident: PhysRevLett.115.070502Cc8R1 doi: 10.1088/1367-2630/16/6/065019 – volume-title: Optics, Light and Lasers year: 2007 ident: PhysRevLett.115.070502Cc32R1 – ident: PhysRevLett.115.070502Cc47R1 doi: 10.1103/PhysRevB.58.5692 – ident: PhysRevLett.115.070502Cc15R1 doi: 10.1103/PhysRevLett.98.060502 – ident: PhysRevLett.115.070502Cc20R1 doi: 10.1103/PhysRevLett.98.203601 – ident: PhysRevLett.115.070502Cc12R1 doi: 10.1088/1367-2630/8/5/075 – ident: PhysRevLett.115.070502Cc43R1 doi: 10.1038/ncomms3781 – ident: PhysRevLett.115.070502Cc7R1 doi: 10.1038/nphoton.2014.215 – ident: PhysRevLett.115.070502Cc53R1 doi: 10.1109/TPAMI.2004.47 – ident: PhysRevLett.115.070502Cc21R1 doi: 10.1038/ncomms3527 – ident: PhysRevLett.115.070502Cc25R1 doi: 10.1103/PhysRevA.45.8185 – ident: PhysRevLett.115.070502Cc35R1 doi: 10.1103/PhysRevA.79.052329 – ident: PhysRevLett.115.070502Cc18R1 doi: 10.1103/PhysRevLett.94.040501 – ident: PhysRevLett.115.070502Cc13R1 doi: 10.1038/nphys919 – ident: PhysRevLett.115.070502Cc49R1 doi: 10.1103/PhysRevLett.110.133604 – ident: PhysRevLett.115.070502Cc51R1 doi: 10.1103/PhysRevLett.93.130503 – ident: PhysRevLett.115.070502Cc44R1 doi: 10.1103/PhysRevLett.105.153601 – ident: PhysRevLett.115.070502Cc28R1 doi: 10.1038/nphys1996 – ident: PhysRevLett.115.070502Cc29R1 doi: 10.1088/1367-2630/17/2/023011 – ident: PhysRevLett.115.070502Cc2R1 doi: 10.1103/PhysRevLett.81.5932 – ident: PhysRevLett.115.070502Cc3R1 doi: 10.1038/nature09719 – ident: PhysRevLett.115.070502Cc22R1 doi: 10.1038/nphoton.2013.355 – ident: PhysRevLett.115.070502Cc40R1 doi: 10.1103/PhysRevLett.101.260502 |
| SSID | ssj0001268 |
| Score | 2.5611992 |
| Snippet | Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 070502 |
| SubjectTerms | Assessments Crystals Entanglement Multiplexing Optical data processing Photonics Three dimensional |
| Title | Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26317702 https://www.proquest.com/docview/1708895387 https://www.proquest.com/docview/1786190513 |
| Volume | 115 |
| WOSCitedRecordID | wos000359437000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jKPji_TJvRPA1LmmSNn0cc8MHN28T91bSNJXB7KS7gP_ek3YOBafspQ8hJw0npyffaU6-g9BlaFTBAUNCKSURylISJxDzaGhLrY1jqgt2_dug21X9fnhfQfT3E3xGed1lQj7ambvdAg3yCmxUluyRSjjD5p3-wvUyzy9dL3d5BzSYXwlePszP3WgJxCy2mvbW6pPcRptzWIkbpR3soIrNdtF6kd5pxnvo5WEKGpy-4ScIscGD4FGKe7CKllw7dv-SmQPf5bErIUIamatPn5OOY2dwUq0MIORrmWiOBxnWuJl_AKwc7qPndqvXvCHzkgrEcCEmJKEm8Q04R6M9LZiNhabKeiwVMtF-bHwtLZNpGFtFUxUaARGFZVwBqrDQO-UHqJqNMnuEcOonKkxDrS2HqIfBQCH09GLPSwBzCVND8ku1kZnzjbuyF8OoiDsoj74pDRpkVCqthuoLufeSceNfiYuvlYvg43AnHjqzo-k4YoHL4gKfHvzVR0EQCb6J19BhueyL93o-wKuAescrz-kEbQC0ku7vMxOnqDrJp_YMrZnZZDDOzwurhWfQV58lreuo |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Storage+of+Three-Dimensional+Orbital-Angular-Momentum+Entanglement+in+a+Crystal&rft.jtitle=Physical+review+letters&rft.au=Zhou%2C+Zong-Quan&rft.au=Hua%2C+Yi-Lin&rft.au=Liu%2C+Xiao&rft.au=Chen%2C+Geng&rft.date=2015-08-14&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=115&rft.issue=7&rft_id=info:doi/10.1103%2FPhysRevLett.115.070502&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |