Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal

Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after stora...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 115; číslo 7; s. 070502
Hlavní autoři: Zhou, Zong-Quan, Hua, Yi-Lin, Liu, Xiao, Chen, Geng, Xu, Jin-Shi, Han, Yong-Jian, Li, Chuan-Feng, Guo, Guang-Can
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 14.08.2015
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.
AbstractList Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.
Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.
Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152+ or -0.033). The fidelity of the memory process is 0.993+ or -0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare- earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.
ArticleNumber 070502
Author Xu, Jin-Shi
Han, Yong-Jian
Hua, Yi-Lin
Zhou, Zong-Quan
Guo, Guang-Can
Li, Chuan-Feng
Chen, Geng
Liu, Xiao
Author_xml – sequence: 1
  givenname: Zong-Quan
  surname: Zhou
  fullname: Zhou, Zong-Quan
– sequence: 2
  givenname: Yi-Lin
  surname: Hua
  fullname: Hua, Yi-Lin
– sequence: 3
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
– sequence: 4
  givenname: Geng
  surname: Chen
  fullname: Chen, Geng
– sequence: 5
  givenname: Jin-Shi
  surname: Xu
  fullname: Xu, Jin-Shi
– sequence: 6
  givenname: Yong-Jian
  surname: Han
  fullname: Han, Yong-Jian
– sequence: 7
  givenname: Chuan-Feng
  surname: Li
  fullname: Li, Chuan-Feng
– sequence: 8
  givenname: Guang-Can
  surname: Guo
  fullname: Guo, Guang-Can
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26317702$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP3DAQha2KCnYpfwHl2EtgJk5sR-oFbSkgLaJQEEfL8U6WVIlDbafS_nu82kWqemlPo5n53oz03pwduNERY6cIZ4jAz7-_bMID_V5SjGlQnYGECooPbIYg61wilgdsBsAxrwHkEZuH8BMAsBDqkB0VgqOUUMzY8_1kXJyG7EccvVlTNrbZ44snyr92A7nQjc702Z1vumj6_MKtp974_HZMu63q0kXj1j1t26xzmckWfhMS-ol9bE0f6GRfj9nTt8vHxXW-vLu6WVwsc8vLMuYrsCthSyGtKUyJ1JQGFBXYltXKiMYKUxFWbd2QglbVtuQgCLmCGinRLT9mn3d3X_34a6IQ9dAFS31vHI1T0CiVwBoq5P-BglJ1xZVM6OkenZqBVvrVd4PxG_3uWwK-7ADrxxA8tdomg2JyK3rT9RpBb2PSf8SUBpXexZTk4i_5-4d_CN8ARuKa_w
CitedBy_id crossref_primary_10_1038_s41598_018_27888_y
crossref_primary_10_1103_PhysRevLett_127_220502
crossref_primary_10_1002_qute_202300037
crossref_primary_10_1063_5_0183220
crossref_primary_10_1002_lpor_202100219
crossref_primary_10_1007_s11467_022_1240_8
crossref_primary_10_1016_j_scib_2022_11_007
crossref_primary_10_3390_sym16081053
crossref_primary_10_1103_PhysRevApplied_4_064011
crossref_primary_10_1063_1_4948519
crossref_primary_10_1103_PhysRevApplied_22_044019
crossref_primary_10_1364_PRJ_559202
crossref_primary_10_1038_s42005_021_00726_w
crossref_primary_10_1016_j_jlumin_2018_05_041
crossref_primary_10_1038_ncomms13514
crossref_primary_10_1103_PhysRevApplied_18_024027
crossref_primary_10_1063_5_0199572
crossref_primary_10_1088_0256_307X_38_9_094203
crossref_primary_10_1088_1367_2630_aa4f38
crossref_primary_10_1038_s41598_020_72071_x
crossref_primary_10_1038_s41467_017_02775_8
crossref_primary_10_1016_j_scib_2025_01_003
crossref_primary_10_1038_s41598_018_25592_5
crossref_primary_10_1103_PhysRevApplied_19_044072
crossref_primary_10_1038_s41534_023_00749_x
crossref_primary_10_1016_j_scib_2019_09_006
crossref_primary_10_1088_0256_307X_38_4_044201
crossref_primary_10_1109_COMST_2021_3109944
crossref_primary_10_1038_s41467_018_05669_5
crossref_primary_10_1088_2058_9565_addd93
crossref_primary_10_1103_PhysRevA_108_L050601
crossref_primary_10_1063_1_4984206
crossref_primary_10_1016_j_physleta_2021_127295
crossref_primary_10_1063_5_0055428
crossref_primary_10_1116_5_0016007
crossref_primary_10_1016_j_physleta_2020_126780
crossref_primary_10_1038_s41377_019_0194_2
crossref_primary_10_1080_09500340_2016_1148212
crossref_primary_10_1021_acsnano_5c11498
crossref_primary_10_1364_PRJ_384449
crossref_primary_10_1038_s41586_021_03505_3
crossref_primary_10_1364_PRJ_537109
crossref_primary_10_1007_s44214_023_00044_y
crossref_primary_10_1038_srep44934
crossref_primary_10_1088_1367_2630_aabe3b
crossref_primary_10_1063_5_0179539
crossref_primary_10_1038_s42005_019_0201_1
crossref_primary_10_1364_PRJ_427745
crossref_primary_10_1093_nsr_nww051
crossref_primary_10_1038_lsa_2016_157
crossref_primary_10_1016_j_optcom_2022_129088
crossref_primary_10_1088_1361_6455_aa9b95
crossref_primary_10_1364_OL_562996
crossref_primary_10_1088_1674_1056_27_2_020303
crossref_primary_10_1088_1367_2630_18_1_013006
crossref_primary_10_1038_ncomms9652
crossref_primary_10_1063_5_0156874
crossref_primary_10_1515_nanoph_2024_0487
crossref_primary_10_1103_PhysRevApplied_14_054071
crossref_primary_10_1038_s41598_017_18229_6
crossref_primary_10_1002_lpor_202401759
crossref_primary_10_1038_s41534_024_00812_1
crossref_primary_10_1103_PhysRevA_111_052431
crossref_primary_10_1016_j_chip_2023_100081
crossref_primary_10_1103_8l9k_12k2
crossref_primary_10_1002_lpor_202300257
crossref_primary_10_1088_2040_8978_19_1_013001
crossref_primary_10_1140_epjd_s10053_024_00937_0
crossref_primary_10_1109_JLT_2021_3081727
crossref_primary_10_1038_ncomms11202
crossref_primary_10_1103_PhysRevLett_134_200801
Cites_doi 10.1103/PhysRevLett.93.053601
10.1103/PhysRevLett.114.230501
10.1364/JOSAB.31.000A20
10.1103/PhysRevLett.109.133601
10.1038/nature14025
10.1088/1367-2630/13/1/013013
10.1103/PhysRevA.66.012303
10.1103/PhysRevLett.113.053603
10.1103/PhysRevLett.108.190505
10.1016/j.jlumin.2011.12.036
10.1103/PhysRevA.45.8185
10.1038/nature09662
10.1103/PhysRevLett.114.050502
10.1103/PhysRevLett.103.110503
10.1103/PhysRevLett.88.040404
10.1103/PhysRevA.90.042301
10.1103/PhysRevLett.114.230502
10.1038/nphoton.2014.311
10.1103/PhysRevLett.91.227902
10.1103/PhysRevLett.93.080502
10.1103/PhysRevLett.111.033601
10.1103/RevModPhys.83.33
10.1038/nature09081
10.1364/OL.23.000636
10.1016/S0022-2313(02)00281-8
10.1103/PhysRevLett.98.190503
10.1103/PhysRevLett.108.263602
10.1038/nphoton.2011.213
10.1088/1367-2630/16/6/065019
10.1103/PhysRevB.58.5692
10.1103/PhysRevLett.98.060502
10.1103/PhysRevLett.98.203601
10.1088/1367-2630/8/5/075
10.1038/ncomms3781
10.1038/nphoton.2014.215
10.1109/TPAMI.2004.47
10.1038/ncomms3527
10.1103/PhysRevA.79.052329
10.1103/PhysRevLett.94.040501
10.1038/nphys919
10.1103/PhysRevLett.110.133604
10.1103/PhysRevLett.93.130503
10.1103/PhysRevLett.105.153601
10.1038/nphys1996
10.1088/1367-2630/17/2/023011
10.1103/PhysRevLett.81.5932
10.1038/nature09719
10.1038/nphoton.2013.355
10.1103/PhysRevLett.101.260502
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevLett.115.070502
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 26317702
10_1103_PhysRevLett_115_070502
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c344t-d0cd6c467ca2a41eb4a08e21f45da6bc6a5e15f9be80f89c4306e138091e1ebf3
IEDL.DBID 3MX
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359437000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Fri Jul 11 11:43:55 EDT 2025
Fri Jul 11 09:02:34 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Sat Nov 29 01:46:12 EST 2025
Tue Nov 18 21:18:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-d0cd6c467ca2a41eb4a08e21f45da6bc6a5e15f9be80f89c4306e138091e1ebf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26317702
PQID 1708895387
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1786190513
proquest_miscellaneous_1708895387
pubmed_primary_26317702
crossref_citationtrail_10_1103_PhysRevLett_115_070502
crossref_primary_10_1103_PhysRevLett_115_070502
PublicationCentury 2000
PublicationDate 2015-Aug-14
PublicationDateYYYYMMDD 2015-08-14
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-Aug-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2015
References PhysRevLett.115.070502Cc34R1
PhysRevLett.115.070502Cc11R1
PhysRevLett.115.070502Cc53R1
PhysRevLett.115.070502Cc13R1
PhysRevLett.115.070502Cc38R1
PhysRevLett.115.070502Cc15R1
PhysRevLett.115.070502Cc36R1
PhysRevLett.115.070502Cc30R1
PhysRevLett.115.070502Cc51R1
PhysRevLett.115.070502Cc17R1
PhysRevLett.115.070502Cc19R1
PhysRevLett.115.070502Cc20R1
PhysRevLett.115.070502Cc45R1
PhysRevLett.115.070502Cc22R1
PhysRevLett.115.070502Cc43R1
PhysRevLett.115.070502Cc24R1
PhysRevLett.115.070502Cc49R1
PhysRevLett.115.070502Cc47R1
PhysRevLett.115.070502Cc41R1
PhysRevLett.115.070502Cc2R1
PhysRevLett.115.070502Cc4R1
PhysRevLett.115.070502Cc6R1
PhysRevLett.115.070502Cc28R1
PhysRevLett.115.070502Cc8R1
PhysRevLett.115.070502Cc33R1
PhysRevLett.115.070502Cc12R1
PhysRevLett.115.070502Cc31R1
PhysRevLett.115.070502Cc14R1
PhysRevLett.115.070502Cc37R1
PhysRevLett.115.070502Cc16R1
PhysRevLett.115.070502Cc35R1
PhysRevLett.115.070502Cc52R1
PhysRevLett.115.070502Cc50R1
PhysRevLett.115.070502Cc18R1
PhysRevLett.115.070502Cc39R1
PhysRevLett.115.070502Cc21R1
PhysRevLett.115.070502Cc44R1
PhysRevLett.115.070502Cc23R1
PhysRevLett.115.070502Cc42R1
PhysRevLett.115.070502Cc25R1
PhysRevLett.115.070502Cc48R1
PhysRevLett.115.070502Cc27R1
PhysRevLett.115.070502Cc46R1
PhysRevLett.115.070502Cc40R1
PhysRevLett.115.070502Cc1R1
PhysRevLett.115.070502Cc3R1
D. Meschede (PhysRevLett.115.070502Cc32R1) 2007
PhysRevLett.115.070502Cc5R1
PhysRevLett.115.070502Cc7R1
PhysRevLett.115.070502Cc29R1
PhysRevLett.115.070502Cc9R1
References_xml – ident: PhysRevLett.115.070502Cc17R1
  doi: 10.1103/PhysRevLett.93.053601
– ident: PhysRevLett.115.070502Cc45R1
  doi: 10.1103/PhysRevLett.114.230501
– ident: PhysRevLett.115.070502Cc30R1
  doi: 10.1364/JOSAB.31.000A20
– ident: PhysRevLett.115.070502Cc19R1
  doi: 10.1103/PhysRevLett.109.133601
– ident: PhysRevLett.115.070502Cc39R1
  doi: 10.1038/nature14025
– ident: PhysRevLett.115.070502Cc38R1
  doi: 10.1088/1367-2630/13/1/013013
– ident: PhysRevLett.115.070502Cc34R1
  doi: 10.1103/PhysRevA.66.012303
– ident: PhysRevLett.115.070502Cc16R1
  doi: 10.1103/PhysRevLett.113.053603
– ident: PhysRevLett.115.070502Cc42R1
  doi: 10.1103/PhysRevLett.108.190505
– ident: PhysRevLett.115.070502Cc41R1
  doi: 10.1016/j.jlumin.2011.12.036
– ident: PhysRevLett.115.070502Cc27R1
  doi: 10.1103/PhysRevA.45.8185
– ident: PhysRevLett.115.070502Cc4R1
  doi: 10.1038/nature09662
– ident: PhysRevLett.115.070502Cc6R1
  doi: 10.1103/PhysRevLett.114.050502
– ident: PhysRevLett.115.070502Cc33R1
  doi: 10.1103/PhysRevLett.103.110503
– ident: PhysRevLett.115.070502Cc36R1
  doi: 10.1103/PhysRevLett.88.040404
– ident: PhysRevLett.115.070502Cc23R1
  doi: 10.1103/PhysRevA.90.042301
– ident: PhysRevLett.115.070502Cc46R1
  doi: 10.1103/PhysRevLett.114.230502
– ident: PhysRevLett.115.070502Cc48R1
  doi: 10.1038/nphoton.2014.311
– ident: PhysRevLett.115.070502Cc24R1
  doi: 10.1103/PhysRevLett.91.227902
– ident: PhysRevLett.115.070502Cc37R1
  doi: 10.1103/PhysRevLett.93.080502
– ident: PhysRevLett.115.070502Cc11R1
  doi: 10.1103/PhysRevLett.111.033601
– ident: PhysRevLett.115.070502Cc1R1
  doi: 10.1103/RevModPhys.83.33
– ident: PhysRevLett.115.070502Cc31R1
  doi: 10.1038/nature09081
– ident: PhysRevLett.115.070502Cc52R1
  doi: 10.1364/OL.23.000636
– ident: PhysRevLett.115.070502Cc50R1
  doi: 10.1016/S0022-2313(02)00281-8
– ident: PhysRevLett.115.070502Cc14R1
  doi: 10.1103/PhysRevLett.98.190503
– ident: PhysRevLett.115.070502Cc9R1
  doi: 10.1103/PhysRevLett.108.263602
– ident: PhysRevLett.115.070502Cc5R1
  doi: 10.1038/nphoton.2011.213
– ident: PhysRevLett.115.070502Cc8R1
  doi: 10.1088/1367-2630/16/6/065019
– volume-title: Optics, Light and Lasers
  year: 2007
  ident: PhysRevLett.115.070502Cc32R1
– ident: PhysRevLett.115.070502Cc47R1
  doi: 10.1103/PhysRevB.58.5692
– ident: PhysRevLett.115.070502Cc15R1
  doi: 10.1103/PhysRevLett.98.060502
– ident: PhysRevLett.115.070502Cc20R1
  doi: 10.1103/PhysRevLett.98.203601
– ident: PhysRevLett.115.070502Cc12R1
  doi: 10.1088/1367-2630/8/5/075
– ident: PhysRevLett.115.070502Cc43R1
  doi: 10.1038/ncomms3781
– ident: PhysRevLett.115.070502Cc7R1
  doi: 10.1038/nphoton.2014.215
– ident: PhysRevLett.115.070502Cc53R1
  doi: 10.1109/TPAMI.2004.47
– ident: PhysRevLett.115.070502Cc21R1
  doi: 10.1038/ncomms3527
– ident: PhysRevLett.115.070502Cc25R1
  doi: 10.1103/PhysRevA.45.8185
– ident: PhysRevLett.115.070502Cc35R1
  doi: 10.1103/PhysRevA.79.052329
– ident: PhysRevLett.115.070502Cc18R1
  doi: 10.1103/PhysRevLett.94.040501
– ident: PhysRevLett.115.070502Cc13R1
  doi: 10.1038/nphys919
– ident: PhysRevLett.115.070502Cc49R1
  doi: 10.1103/PhysRevLett.110.133604
– ident: PhysRevLett.115.070502Cc51R1
  doi: 10.1103/PhysRevLett.93.130503
– ident: PhysRevLett.115.070502Cc44R1
  doi: 10.1103/PhysRevLett.105.153601
– ident: PhysRevLett.115.070502Cc28R1
  doi: 10.1038/nphys1996
– ident: PhysRevLett.115.070502Cc29R1
  doi: 10.1088/1367-2630/17/2/023011
– ident: PhysRevLett.115.070502Cc2R1
  doi: 10.1103/PhysRevLett.81.5932
– ident: PhysRevLett.115.070502Cc3R1
  doi: 10.1038/nature09719
– ident: PhysRevLett.115.070502Cc22R1
  doi: 10.1038/nphoton.2013.355
– ident: PhysRevLett.115.070502Cc40R1
  doi: 10.1103/PhysRevLett.101.260502
SSID ssj0001268
Score 2.5611992
Snippet Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 070502
SubjectTerms Assessments
Crystals
Entanglement
Multiplexing
Optical data processing
Photonics
Three dimensional
Title Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal
URI https://www.ncbi.nlm.nih.gov/pubmed/26317702
https://www.proquest.com/docview/1708895387
https://www.proquest.com/docview/1786190513
Volume 115
WOSCitedRecordID wos000359437000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jKPji_TJvRPA1LmmSNn0cc8MHN28T91bSNJXB7KS7gP_ek3YOBafspQ8hJw0npyffaU6-g9BlaFTBAUNCKSURylISJxDzaGhLrY1jqgt2_dug21X9fnhfQfT3E3xGed1lQj7ambvdAg3yCmxUluyRSjjD5p3-wvUyzy9dL3d5BzSYXwlePszP3WgJxCy2mvbW6pPcRptzWIkbpR3soIrNdtF6kd5pxnvo5WEKGpy-4ScIscGD4FGKe7CKllw7dv-SmQPf5bErIUIamatPn5OOY2dwUq0MIORrmWiOBxnWuJl_AKwc7qPndqvXvCHzkgrEcCEmJKEm8Q04R6M9LZiNhabKeiwVMtF-bHwtLZNpGFtFUxUaARGFZVwBqrDQO-UHqJqNMnuEcOonKkxDrS2HqIfBQCH09GLPSwBzCVND8ku1kZnzjbuyF8OoiDsoj74pDRpkVCqthuoLufeSceNfiYuvlYvg43AnHjqzo-k4YoHL4gKfHvzVR0EQCb6J19BhueyL93o-wKuAescrz-kEbQC0ku7vMxOnqDrJp_YMrZnZZDDOzwurhWfQV58lreuo
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Storage+of+Three-Dimensional+Orbital-Angular-Momentum+Entanglement+in+a+Crystal&rft.jtitle=Physical+review+letters&rft.au=Zhou%2C+Zong-Quan&rft.au=Hua%2C+Yi-Lin&rft.au=Liu%2C+Xiao&rft.au=Chen%2C+Geng&rft.date=2015-08-14&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=115&rft.issue=7&rft_id=info:doi/10.1103%2FPhysRevLett.115.070502&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon