Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation
The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-si...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 174; číslo 1; s. 321 - 341 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods. |
|---|---|
| AbstractList | The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods. |
| Author | Machado, José A. Tenreiro Bhrawy, Ali H. Zaky, Mahmoud A. |
| Author_xml | – sequence: 1 givenname: Ali H. surname: Bhrawy fullname: Bhrawy, Ali H. email: alibhrawy@yahoo.co.uk organization: Department of Mathematics, Faculty of Science, Beni-Suef University – sequence: 2 givenname: Mahmoud A. surname: Zaky fullname: Zaky, Mahmoud A. organization: Department of Applied Mathematics, National Research Centre – sequence: 3 givenname: José A. Tenreiro surname: Machado fullname: Machado, José A. Tenreiro organization: Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto |
| BookMark | eNp9kLFOwzAURS1UJNrCB7BZYjbYsRM7Y1W1gFTB0MBqOY7TpEqT1E6AbvwDf8iXkDQMCAmmN7x7_K7PBIzKqjQAXBJ8TTDmN47g0OcIkwBhEVAkTsCY-JwiT3AxAmOMPQ9Rj4ZnYOLcFmMcCs7GoHxod8bmWhVwXRVtk1clrFLYZAZGrxVa54lJ4LpW2ny-f0T5zsClVbqPdURkCrOxqs7gYt-qI_ucKzjPTHxwmXmBkWrhrK5t9ZbvjvtzcJqqwpmL7zkFT8tFNL9Dq8fb-_lshTRlrEFa8JQkmnsJ9XkSJlwEfhwIKpRQihCcspjRNIgxYz4NfJaS2DDuB2nihcYPCZ2Cq-Hd7va-Na6R26q1XWcnSeh1LgTlfYoMKW0r56xJZW27ovYgCZa9VjlolZ1W2WuVomP4L0bnzfFvjVV58S_pDaTrrpQbY390-hP6AkcSjyw |
| CitedBy_id | crossref_primary_10_1007_s40314_020_01160_4 crossref_primary_10_1016_j_chaos_2021_111530 crossref_primary_10_1515_phys_2016_0031 crossref_primary_10_1140_epjp_i2019_12845_1 crossref_primary_10_1007_s40995_023_01445_3 crossref_primary_10_1155_2022_6203440 crossref_primary_10_5269_bspm_44010 crossref_primary_10_1007_s12043_021_02113_0 crossref_primary_10_1016_S0034_4877_22_00011_8 crossref_primary_10_1002_mma_8263 crossref_primary_10_1088_1402_4896_ad7c93 crossref_primary_10_1007_s40314_017_0553_7 crossref_primary_10_2478_mjpaa_2021_0028 crossref_primary_10_1007_s10957_018_1389_z crossref_primary_10_1088_1402_4896_ab61dd crossref_primary_10_1186_s13662_019_2390_z crossref_primary_10_1007_s40314_020_01363_9 crossref_primary_10_1177_1077546320971156 crossref_primary_10_1007_s40819_017_0475_5 crossref_primary_10_1007_s00009_019_1300_7 crossref_primary_10_1007_s40314_023_02474_9 crossref_primary_10_1007_s11075_021_01188_5 crossref_primary_10_1007_s42967_020_00060_y crossref_primary_10_1016_j_camwa_2019_03_027 crossref_primary_10_1016_j_cnsns_2019_03_013 crossref_primary_10_1007_s40819_022_01343_z crossref_primary_10_1007_s11071_016_2797_y crossref_primary_10_32513_tbilisi_1569463232 crossref_primary_10_1016_j_matcom_2024_11_013 crossref_primary_10_1177_10775463211059364 crossref_primary_10_1177_00202940231222182 crossref_primary_10_1007_s11071_017_3654_3 crossref_primary_10_1007_s10013_019_00340_y crossref_primary_10_1007_s11071_016_2714_4 crossref_primary_10_1007_s11071_017_3525_y crossref_primary_10_1007_s40314_017_0488_z crossref_primary_10_1007_s40314_018_0635_1 crossref_primary_10_1177_1461348419830226 crossref_primary_10_1177_1077546319840901 |
| Cites_doi | 10.1007/s11075-015-9990-9 10.1016/j.aml.2012.01.027 10.1177/1077546314566835 10.1016/j.jmaa.2007.06.023 10.1090/S0025-5718-2015-02917-2 10.1016/j.cnsns.2010.12.019 10.1007/s11075-010-9393-x 10.1137/080714130 10.1016/j.apm.2015.06.012 10.1007/s10092-013-0084-6 10.1007/s00440-003-0309-8 10.1016/j.camwa.2011.07.024 10.1016/j.cnsns.2010.05.027 10.1002/cnm.1293 10.1016/j.cpc.2008.11.012 10.1142/S0217979206033620 10.1016/j.nonrwa.2012.08.014 10.1007/s11071-015-2087-0 10.1016/j.cam.2014.09.028 10.1140/epjp/i2015-15033-5 10.1002/mma.3604 10.1016/j.apm.2011.05.011 10.1007/978-3-642-14574-2 10.2298/TSCI15S10S7A 10.1016/j.enganabound.2013.10.009 10.1051/m2an/2013091 10.1016/j.camwa.2010.12.072 10.1023/A:1016539022492 10.1016/j.sigpro.2014.04.015 10.1002/num.21822 10.1016/j.camwa.2012.01.020 10.1016/j.jcp.2014.12.043 10.1155/2015/289387 10.1016/j.cam.2013.05.022 10.1177/1077546315597815 10.1063/1.4794076 10.1016/j.cam.2013.09.040 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2016 Journal of Optimization Theory and Applications is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Journal of Optimization Theory and Applications is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10957-016-0863-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| EndPage | 341 |
| ExternalDocumentID | 10_1007_s10957_016_0863_8 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c344t-c87f1dc72d357d9d7865b6838a8aa110f4b43f6b04453654f1be4756fd29e5913 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406014500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Tue Nov 04 21:57:34 EST 2025 Tue Nov 18 21:55:08 EST 2025 Sat Nov 29 06:02:27 EST 2025 Fri Feb 21 02:34:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Operational matrix Fractional telegraph equation Riesz fractional derivative Fractional Klein–Gordon equation Shifted Chebyshev Tau method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-c87f1dc72d357d9d7865b6838a8aa110f4b43f6b04453654f1be4756fd29e5913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/10400.22/9406 |
| PQID | 1920228371 |
| PQPubID | 48247 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_1920228371 crossref_primary_10_1007_s10957_016_0863_8 crossref_citationtrail_10_1007_s10957_016_0863_8 springer_journals_10_1007_s10957_016_0863_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2017 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | LuchkoYFractional wave equation and damped wavesJ. Math. Phys.201354031505305942710.1063/1.47940761302.35408 ChenJLiuFAnhVShenSLiuQLiaoCThe analytical solution and numerical solution of the fractional diffusion-wave equation with dampingAppl. Math. Comput.20122191737174829838801290.35306 BhrawyAHTahaTMMachadoJATA review of operational matrices and spectral techniques for fractional calculusNonlinear Dyn.20158110231052336713710.1007/s11071-015-2087-01348.65106 DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.2008471204226245285810.1137/08071413005686546 ShivanianESpectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equationMath. Methods Appl. Sci.20151339.65195 BhrawyAHAlofiASThe operational matrix of fractional integration for shifted Chebyshev polynomialsAppl. Math. Lett.2013262531297139410.1016/j.aml.2012.01.0271255.65147 KumarDPurohitSDSecerAAtanganaAOn generalized fractional kinetic equations involving generalized Bessel function of the first kindMath. Probl. Eng.20153317025 TianWYZhouHDengWA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.201529417031727333588810.1090/S0025-5718-2015-02917-21318.65058 OrsingherEZhaoXThe space-fractional telegraph equation and the related fractional telegraph processChin. Ann. Math.200324B11219665961033.60077 DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001 AtanganaANumerical analysis of time fractional three dimensional diffusion equationTherm. Sci.201519171210.2298/TSCI15S10S7A ZhangWLiJYangYSpatial fractional telegraph equation for image structure preserving denoisingSignal Process.201510736837710.1016/j.sigpro.2014.04.015 MachadoJATKiryakovaVMainardiFRecent history of fractional calculusCommun. Nonlinear Sci. Numer. Simul.20111611401153273662210.1016/j.cnsns.2010.05.0271221.26002 DengWHHesthavenJSLocal discontinuous Galerkin methods for fractional diffusion equationsESAIM: M2AN20134718451864312337910.1051/m2an/20130911282.35400 TianWYDengWWuYPolynomial spectral collocation method for space fractional advection–diffusion equationNumer. Methods Partial Differ. Equ.2014302514535316397310.1002/num.218221287.65093 ShenSLiuFAnhVNumerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equationNumer. Algorithms201156383403277412110.1007/s11075-010-9393-x1214.65046 DasSFunctional Fractional Calculus for System Identification and Controls2008New YorkSpringer1154.26007 Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012 DingXLJiangYLAnalytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditionsNonlinear Anal. Real World Appl.20131410261033299113010.1016/j.nonrwa.2012.08.0141260.35241 BhrawyAHZakyMAVan GorderRAA space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Legendre spectral tau method for the two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional diffusion-wave equationNumer. Algorithms20151334.65166 MomaniSAnalytic and approximate solutions of the space- and time-fractional telegraph equationsAppl. Math. Comput.20051701126113421752731103.65335 DehghanMYousefiSALotfiAThe use of He’s variational iteration method for solving the telegraph and fractional telegraph equationsInt. J. Numer. Methods Biomed. Eng.201127219231279673010.1002/cnm.12931210.65173 OrsingherEBeghinLTime-fractional telegraph equation and telegraph processes with Brownian timeProbab. Theory Relat. Fields200412814116020272981049.60062 ChenSJiangXLiuFTurnerIHigh order unconditionally stable difference schemes for the Riesz space-fractional telegraph equationJ. Comput. Appl. Math.2015278119129328187810.1016/j.cam.2014.09.0281304.65202 KilbasAAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006San DiegoElsevier1092.45003 KanthASVRaviArunaKDifferential transform method for solving the linear and nonlinear Klein–Gordon equationComput. Phys. Commun.2009180708711267829110.1016/j.cpc.2008.11.0121198.81038 ZhangYXDingHFImproved matrix transform method for the Riesz space fractional reaction dispersion equationComput. Math. Appl.2014260266280313334810.1016/j.cam.2013.09.0401293.65115 AgrawalOPSolution for a fractional diffusion-wave equation defined in a bounded domainNonlinear Dyn.200229145155192647110.1023/A:10165390224921009.65085 JiangWLinYRepresentation of exact solution for the time-fractional telegraph equation in the reproducing kernel spaceCommun. Nonlinear Sci. Numer. Simul.20111636393645278781010.1016/j.cnsns.2010.12.0191223.35112 HosseiniVRChenWAvazzadehZNumerical solution of fractional telegraph equation by using radial basis functionsEng. Anal. Bound. Elem.2014383139313143110.1016/j.enganabound.2013.10.0091287.65085 WeiLDaiHZhangDSiZFully discrete local discontinuous Galerkin method for solving the fractional telegraph equationCalcolo201451175192317139510.1007/s10092-013-0084-61311.35331 MillerKRossBAn Introduction to the Fractional Calaulus and Fractional Differential Equations1993New YorkWiley0789.26002 ChenJLiuFAnhVAnalytical solution for the time-fractional telegraph equation by the method of separating variablesJ. Math. Anal. Appl.200833813641377238650310.1016/j.jmaa.2007.06.0231138.35373 DohaEHBhrawyAHEzz-EldienSSEfficient Chebyshev spectral methods for solving multi-term fractional orders differential equationsAppl. Math. Model.20113556625672282094210.1016/j.apm.2011.05.0111228.65126 LiCZhaoTDengWWuYOrthogonal spline collocation methods for the subdiffusion equationJ. Comput. Appl. Math.2014255517528309343910.1016/j.cam.2013.05.0221291.65307 AtanganaAOn the stability and convergence of the time-fractional variable order telegraph equationJ. Comput. Phys.2015293104114334246010.1016/j.jcp.2014.12.0431349.65263 LiuFZhuangPBurrageKNumerical methods and analysis for a class of fractional advection–dispersion modelsComput. Math. Appl.20126429903007298932910.1016/j.camwa.2012.01.0201268.65124 ZhaoZLiCFractional difference/finite element approximations for the time-space fractional telegraph equationAppl. Math. Comput.20122192975298829919971309.65101 MoaddyaKMomaniSHashimaIThe non-standard finite difference scheme for linear fractional PDEs in fluid mechanicsJ. Comput. Appl. Math.20116112091216277052310.1016/j.camwa.2010.12.072 BhrawyAHZakyMAMachadoJATEfficient Legendre spectral tau algorithm for solving two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional advection-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}dispersion equationJ. Vib. Control201506738248 BhrawyAHA highly accurate collocation algorithm for 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} and 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document} fractional percolation equationsJ. Vib. Control201506740982 HosseiniVRShivanianEChenWLocal integration of 2-D fractional telegraph equation via local radial point interpolant approximationEur. Phys. J. Plus2015130212110.1140/epjp/i2015-15033-5 DohaEHBhrawyAHEzz-EldienSSA Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional orderComput. Math. Appl.20116223642373283169810.1016/j.camwa.2011.07.0241231.65126 LiCDengWChaos synchronization of fractional-order differential systemsInt. J. Mod. Phys. B20062007791803221525210.1142/S02179792060336201101.37025 AH Bhrawy (863_CR20) 2015 A Atangana (863_CR15) 2015; 293 EH Doha (863_CR44) 2011; 62 M Dehghan (863_CR32) 2011; 27 S Shen (863_CR38) 2011; 56 F Liu (863_CR39) 2012; 64 YX Zhang (863_CR40) 2014; 260 AH Bhrawy (863_CR19) 2015 WY Tian (863_CR25) 2014; 30 ASVRavi Kanth (863_CR37) 2009; 180 E Orsingher (863_CR29) 2003; 24B E Orsingher (863_CR28) 2004; 128 D Kumar (863_CR4) 2015 E Shivanian (863_CR24) 2015 C Li (863_CR5) 2006; 20 XL Ding (863_CR26) 2013; 14 WH Deng (863_CR14) 2008; 47 W Jiang (863_CR27) 2011; 16 J Chen (863_CR31) 2008; 338 AAA Kilbas (863_CR2) 2006 L Wei (863_CR18) 2014; 51 K Diethelm (863_CR6) 2010 AH Bhrawy (863_CR8) 2015; 81 VR Hosseini (863_CR34) 2014; 38 VR Hosseini (863_CR23) 2015; 130 863_CR17 WY Tian (863_CR12) 2015; 294 EH Doha (863_CR35) 2011; 35 J Chen (863_CR42) 2012; 219 K Moaddya (863_CR33) 2011; 61 C Li (863_CR16) 2014; 255 K Miller (863_CR7) 1993 AH Bhrawy (863_CR36) 2013; 26 WH Deng (863_CR13) 2013; 47 AH Bhrawy (863_CR43) 2015 A Atangana (863_CR10) 2015; 19 Z Zhao (863_CR9) 2012; 219 S Chen (863_CR11) 2015; 278 S Das (863_CR1) 2008 JAT Machado (863_CR3) 2011; 16 OP Agrawal (863_CR21) 2002; 29 S Momani (863_CR30) 2005; 170 Y Luchko (863_CR41) 2013; 54 W Zhang (863_CR22) 2015; 107 |
| References_xml | – reference: KumarDPurohitSDSecerAAtanganaAOn generalized fractional kinetic equations involving generalized Bessel function of the first kindMath. Probl. Eng.20153317025 – reference: LiCZhaoTDengWWuYOrthogonal spline collocation methods for the subdiffusion equationJ. Comput. Appl. Math.2014255517528309343910.1016/j.cam.2013.05.0221291.65307 – reference: AgrawalOPSolution for a fractional diffusion-wave equation defined in a bounded domainNonlinear Dyn.200229145155192647110.1023/A:10165390224921009.65085 – reference: ShivanianESpectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equationMath. Methods Appl. Sci.20151339.65195 – reference: MoaddyaKMomaniSHashimaIThe non-standard finite difference scheme for linear fractional PDEs in fluid mechanicsJ. Comput. Appl. Math.20116112091216277052310.1016/j.camwa.2010.12.072 – reference: OrsingherEBeghinLTime-fractional telegraph equation and telegraph processes with Brownian timeProbab. Theory Relat. Fields200412814116020272981049.60062 – reference: LuchkoYFractional wave equation and damped wavesJ. Math. Phys.201354031505305942710.1063/1.47940761302.35408 – reference: ZhangYXDingHFImproved matrix transform method for the Riesz space fractional reaction dispersion equationComput. Math. Appl.2014260266280313334810.1016/j.cam.2013.09.0401293.65115 – reference: DehghanMYousefiSALotfiAThe use of He’s variational iteration method for solving the telegraph and fractional telegraph equationsInt. J. Numer. Methods Biomed. Eng.201127219231279673010.1002/cnm.12931210.65173 – reference: LiCDengWChaos synchronization of fractional-order differential systemsInt. J. Mod. Phys. B20062007791803221525210.1142/S02179792060336201101.37025 – reference: TianWYDengWWuYPolynomial spectral collocation method for space fractional advection–diffusion equationNumer. Methods Partial Differ. Equ.2014302514535316397310.1002/num.218221287.65093 – reference: OrsingherEZhaoXThe space-fractional telegraph equation and the related fractional telegraph processChin. Ann. Math.200324B11219665961033.60077 – reference: TianWYZhouHDengWA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.201529417031727333588810.1090/S0025-5718-2015-02917-21318.65058 – reference: LiuFZhuangPBurrageKNumerical methods and analysis for a class of fractional advection–dispersion modelsComput. Math. Appl.20126429903007298932910.1016/j.camwa.2012.01.0201268.65124 – reference: AtanganaANumerical analysis of time fractional three dimensional diffusion equationTherm. Sci.201519171210.2298/TSCI15S10S7A – reference: HosseiniVRShivanianEChenWLocal integration of 2-D fractional telegraph equation via local radial point interpolant approximationEur. Phys. J. Plus2015130212110.1140/epjp/i2015-15033-5 – reference: BhrawyAHZakyMAMachadoJATEfficient Legendre spectral tau algorithm for solving two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional advection-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}dispersion equationJ. Vib. Control201506738248 – reference: DohaEHBhrawyAHEzz-EldienSSA Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional orderComput. Math. Appl.20116223642373283169810.1016/j.camwa.2011.07.0241231.65126 – reference: DohaEHBhrawyAHEzz-EldienSSEfficient Chebyshev spectral methods for solving multi-term fractional orders differential equationsAppl. Math. Model.20113556625672282094210.1016/j.apm.2011.05.0111228.65126 – reference: KanthASVRaviArunaKDifferential transform method for solving the linear and nonlinear Klein–Gordon equationComput. Phys. Commun.2009180708711267829110.1016/j.cpc.2008.11.0121198.81038 – reference: ChenJLiuFAnhVAnalytical solution for the time-fractional telegraph equation by the method of separating variablesJ. Math. Anal. Appl.200833813641377238650310.1016/j.jmaa.2007.06.0231138.35373 – reference: ShenSLiuFAnhVNumerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equationNumer. Algorithms201156383403277412110.1007/s11075-010-9393-x1214.65046 – reference: BhrawyAHTahaTMMachadoJATA review of operational matrices and spectral techniques for fractional calculusNonlinear Dyn.20158110231052336713710.1007/s11071-015-2087-01348.65106 – reference: DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.2008471204226245285810.1137/08071413005686546 – reference: ZhaoZLiCFractional difference/finite element approximations for the time-space fractional telegraph equationAppl. Math. Comput.20122192975298829919971309.65101 – reference: Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012 – reference: BhrawyAHAlofiASThe operational matrix of fractional integration for shifted Chebyshev polynomialsAppl. Math. Lett.2013262531297139410.1016/j.aml.2012.01.0271255.65147 – reference: BhrawyAHA highly accurate collocation algorithm for 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} and 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document} fractional percolation equationsJ. Vib. Control201506740982 – reference: MillerKRossBAn Introduction to the Fractional Calaulus and Fractional Differential Equations1993New YorkWiley0789.26002 – reference: ChenJLiuFAnhVShenSLiuQLiaoCThe analytical solution and numerical solution of the fractional diffusion-wave equation with dampingAppl. Math. Comput.20122191737174829838801290.35306 – reference: WeiLDaiHZhangDSiZFully discrete local discontinuous Galerkin method for solving the fractional telegraph equationCalcolo201451175192317139510.1007/s10092-013-0084-61311.35331 – reference: DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001 – reference: HosseiniVRChenWAvazzadehZNumerical solution of fractional telegraph equation by using radial basis functionsEng. Anal. Bound. Elem.2014383139313143110.1016/j.enganabound.2013.10.0091287.65085 – reference: MachadoJATKiryakovaVMainardiFRecent history of fractional calculusCommun. Nonlinear Sci. Numer. Simul.20111611401153273662210.1016/j.cnsns.2010.05.0271221.26002 – reference: ChenSJiangXLiuFTurnerIHigh order unconditionally stable difference schemes for the Riesz space-fractional telegraph equationJ. Comput. Appl. Math.2015278119129328187810.1016/j.cam.2014.09.0281304.65202 – reference: MomaniSAnalytic and approximate solutions of the space- and time-fractional telegraph equationsAppl. Math. Comput.20051701126113421752731103.65335 – reference: JiangWLinYRepresentation of exact solution for the time-fractional telegraph equation in the reproducing kernel spaceCommun. Nonlinear Sci. Numer. Simul.20111636393645278781010.1016/j.cnsns.2010.12.0191223.35112 – reference: DasSFunctional Fractional Calculus for System Identification and Controls2008New YorkSpringer1154.26007 – reference: KilbasAAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006San DiegoElsevier1092.45003 – reference: DengWHHesthavenJSLocal discontinuous Galerkin methods for fractional diffusion equationsESAIM: M2AN20134718451864312337910.1051/m2an/20130911282.35400 – reference: ZhangWLiJYangYSpatial fractional telegraph equation for image structure preserving denoisingSignal Process.201510736837710.1016/j.sigpro.2014.04.015 – reference: DingXLJiangYLAnalytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditionsNonlinear Anal. Real World Appl.20131410261033299113010.1016/j.nonrwa.2012.08.0141260.35241 – reference: AtanganaAOn the stability and convergence of the time-fractional variable order telegraph equationJ. Comput. Phys.2015293104114334246010.1016/j.jcp.2014.12.0431349.65263 – reference: BhrawyAHZakyMAVan GorderRAA space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Legendre spectral tau method for the two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional diffusion-wave equationNumer. Algorithms20151334.65166 – year: 2015 ident: 863_CR20 publication-title: Numer. Algorithms doi: 10.1007/s11075-015-9990-9 – volume: 26 start-page: 25 year: 2013 ident: 863_CR36 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2012.01.027 – volume-title: An Introduction to the Fractional Calaulus and Fractional Differential Equations year: 1993 ident: 863_CR7 – year: 2015 ident: 863_CR43 publication-title: J. Vib. Control doi: 10.1177/1077546314566835 – volume: 338 start-page: 1364 year: 2008 ident: 863_CR31 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.06.023 – volume: 294 start-page: 1703 year: 2015 ident: 863_CR12 publication-title: Math. Comput. doi: 10.1090/S0025-5718-2015-02917-2 – volume: 219 start-page: 2975 year: 2012 ident: 863_CR9 publication-title: Appl. Math. Comput. – volume: 16 start-page: 3639 year: 2011 ident: 863_CR27 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.12.019 – volume: 56 start-page: 383 year: 2011 ident: 863_CR38 publication-title: Numer. Algorithms doi: 10.1007/s11075-010-9393-x – volume: 47 start-page: 204 issue: 1 year: 2008 ident: 863_CR14 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080714130 – ident: 863_CR17 doi: 10.1016/j.apm.2015.06.012 – volume: 51 start-page: 175 year: 2014 ident: 863_CR18 publication-title: Calcolo doi: 10.1007/s10092-013-0084-6 – volume: 128 start-page: 141160 year: 2004 ident: 863_CR28 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-003-0309-8 – volume: 62 start-page: 2364 year: 2011 ident: 863_CR44 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.07.024 – volume: 16 start-page: 1140 year: 2011 ident: 863_CR3 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.05.027 – volume: 27 start-page: 219 year: 2011 ident: 863_CR32 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1293 – volume: 180 start-page: 708 year: 2009 ident: 863_CR37 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.11.012 – volume: 20 start-page: 791 issue: 07 year: 2006 ident: 863_CR5 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979206033620 – volume: 14 start-page: 1026 year: 2013 ident: 863_CR26 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2012.08.014 – volume: 81 start-page: 1023 year: 2015 ident: 863_CR8 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2087-0 – volume: 278 start-page: 119 year: 2015 ident: 863_CR11 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.09.028 – volume: 130 start-page: 1 issue: 2 year: 2015 ident: 863_CR23 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15033-5 – year: 2015 ident: 863_CR24 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3604 – volume: 35 start-page: 5662 year: 2011 ident: 863_CR35 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.05.011 – volume-title: The Analysis of Fractional Differential Equations year: 2010 ident: 863_CR6 doi: 10.1007/978-3-642-14574-2 – volume-title: Functional Fractional Calculus for System Identification and Controls year: 2008 ident: 863_CR1 – volume: 19 start-page: 7 issue: 1 year: 2015 ident: 863_CR10 publication-title: Therm. Sci. doi: 10.2298/TSCI15S10S7A – volume: 38 start-page: 31 year: 2014 ident: 863_CR34 publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2013.10.009 – volume: 47 start-page: 1845 year: 2013 ident: 863_CR13 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2013091 – volume: 61 start-page: 1209 year: 2011 ident: 863_CR33 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.camwa.2010.12.072 – volume: 29 start-page: 145 year: 2002 ident: 863_CR21 publication-title: Nonlinear Dyn. doi: 10.1023/A:1016539022492 – volume: 107 start-page: 368 year: 2015 ident: 863_CR22 publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.04.015 – volume: 30 start-page: 514 issue: 2 year: 2014 ident: 863_CR25 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.21822 – volume: 64 start-page: 2990 year: 2012 ident: 863_CR39 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.01.020 – volume: 293 start-page: 104 year: 2015 ident: 863_CR15 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.043 – year: 2015 ident: 863_CR4 publication-title: Math. Probl. Eng. doi: 10.1155/2015/289387 – volume: 255 start-page: 517 year: 2014 ident: 863_CR16 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.05.022 – year: 2015 ident: 863_CR19 publication-title: J. Vib. Control doi: 10.1177/1077546315597815 – volume: 24B start-page: 1 year: 2003 ident: 863_CR29 publication-title: Chin. Ann. Math. – volume: 54 start-page: 031505 year: 2013 ident: 863_CR41 publication-title: J. Math. Phys. doi: 10.1063/1.4794076 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 863_CR2 – volume: 170 start-page: 1126 year: 2005 ident: 863_CR30 publication-title: Appl. Math. Comput. – volume: 219 start-page: 1737 year: 2012 ident: 863_CR42 publication-title: Appl. Math. Comput. – volume: 260 start-page: 266 year: 2014 ident: 863_CR40 publication-title: Comput. Math. Appl. doi: 10.1016/j.cam.2013.09.040 |
| SSID | ssj0009874 |
| Score | 2.3889258 |
| Snippet | The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted... The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann-Liouville fractional integral, for shifted... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 321 |
| SubjectTerms | Accuracy Algebra Algorithms Applications of Mathematics Boundary conditions Calculus of Variations and Optimal Control; Optimization Chebyshev approximation Dirichlet problem Engineering Iterative methods Mathematics Mathematics and Statistics Matrices (mathematics) Operations Research/Decision Theory Optimization Polynomials Simplification Spacetime Theory of Computation |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDI5gcIAD_4jBQDlwAkVqm58mx2naxIUJsTLtVrVNKiqhDdZtcOQdeEOehKRttoEACY5VHauKndqO7c8AnEvfi7hgMVKmXkf7_z6KZUwQj5yUc6rDNycphk343S4fDMRN1ced22p3m5Is_tRLzW6CmjJJHQFzhhFfBWva2nEzr-G2118g7XILvewh7GFhU5nfsfhsjBYe5pekaGFrOtv_-sodsFW5lrBZ6sIuWFHDPbC5BDion67nKK35Phh2p2W-5gHa2zE4SqGmgMHzCPUyqSTs6aBavb--mV4R2BmXfRB6RWAHVsD2UwkXDvtZBFv3ytx4qxkMoilsGsTyl6xsjzwAd5120LpC1fwFlGBCJijhfurKxPckpr4U0ueMxoxjHvEo0m5DSmKCUxY7hFDMKEndWBGfslR6QlHh4kNQG46G6ghAplVFcUJTV7OWVIhYEjMpi3rKU44UdeBYQYRJBU5uZmQ8hAtYZbOxoSlIMxsb8jq4mC95LJE5fiNuWOmG1SHNQ-3clug_bh1cWmkuvf6J2fGfqE_AhmdcgaLEtwFqk_FUnYL1ZDbJ8vFZobsfYRzo7g priority: 102 providerName: Springer Nature |
| Title | Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation |
| URI | https://link.springer.com/article/10.1007/s10957-016-0863-8 https://www.proquest.com/docview/1920228371 |
| Volume | 174 |
| WOSCitedRecordID | wos000406014500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2878 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6axyE9pI8k1K0TdOipRWRXj5V0Kq6xCRS7S-ymSS7L7kpLDcZO_Ej686vZR5wUmksvA2JnxcJopU_z-Abgo1Us1SbKqMN8HY__Fc1sJqhOg0Jr6a9vQV42m1DDob68NHHtcFvWaZXNnlhu1Haeo4_81CORiqol_HJzS7FrFEZX6xYaW7DjkU2IKV0DFm9Id3XDwswoZ9w0Uc2qdM5ITLr092kdcaqfnksbsPlXfLQ8dvqv_veDX8N-DThJp1ohb-CFm72Fl49oCP1o8MDdujyA6XBdRXGmpPGZkXlBvAYZ38_paGKdJSN_1XYU60dIf1HVRnj9cdPEgvRuKwpxcjFJSfeXQy-4uyPjdE06yGL-e1KVTB7Cj35v3D2jdU8GmnMhVjTXqghtrpjlUlljlY5kFmmuU52mHkoUIhO8iLJACMkjKYowc0LJqLDMOGlCfgTbs_nMvQMS-eXjtJBF6Ke20pjMCuyeJZljLrCmBUFjkSSvCcuxb8Y02VAtoxETTFJDIya6BZ8eXrmp2DqeU243hkvqH3eZbKzWgs-N6R89_tdk75-f7APsMcQDZZ5vG7ZXi7U7ht38bjVZLk5gS_28OoGdr71hfO5H3xT1chB0UbLvpYxRqpGXsbz28nx08QcC8vna |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqlwoE_EAm19aC-trCZ-JPYBIURZgYAVEmnFLU1iR6y02l32weNP8RvxxGuWVio3Dj1GcUZK8o099sx8H8Bnk7JC6aSkFut1XPyf0tKUgqoiqpWSbvsWVY3YRNrpqLMzfbIAt6EXBssqw5zYTNRmUOEZ-XcXiXiqlnh7eEFRNQqzq0FCw8Pi0N5cuS3beOvgh_u_Xxhr72W7-3SmKkArLsSEViqtY1OlzHCZGm1SlcgyUVwVqijcYliLUvA6KSMhJE-kqOPSilQmtWHaSh1zZ_cZPBfILIalguxkTvKrAuszo5xxHbKovlVPSyzydPt3lXCq_lwH58HtX_nYZplrv_rfPtBrWJkF1GTHe8AbWLD9t7D8gGbRXR3fc9OO30GvM_VZqh4JZ4JkUBM3gmRXA3raNdaQ02FRWYr9MaQ98r0fbnwWRDrI3oWnSCe_ugXZPbd4ym8vSVZMyQ6ytF93fUvoe_j5JC-_Cov9Qd-uAUmce1glZB0700ZqXRqB6mCSWWYjo1sQBQTk1YyQHXVBevmcShpBk2MRHoImVy34ev_I0LORPDZ4MwAln01M43yOkhZ8C1B7cPtfxtYfN_YJXu5nx0f50UHncAOWGMY-TU3zJixORlP7AV5Ul5PuePSx8RgCv58agXf5bEy_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqKr2QKEPdVtafKCXVhaJH7F9qBACViDa1UpsK9RLmsS2utJqd9kHtH-NX4cdxyxUKjcOHKM4IyX5bM94vvkGYEsLUkiVldh4vo7z_wUudcmwLBIrJXfhW1LVzSZEpyNPT1V3CS5jLYynVcY1sV6o9ajyZ-TbzhMJUi3ptm1oEd399s74DPsOUj7TGttpBIgcm78XLnybfjnad__6IyHtg97eIW46DOCKMjbDlRQ21ZUgmnKhlRYy42UmqSxkUbiN0bKSUZuVCWOcZpzZtDRM8MxqogxXKXV2H8GKcDGmpxN2-c-F4K-MCtAEU0JVzKiGsj3FPeHTxfIyo1je3hMXju4_udl6y2s_f8gfaw1WG0cb7YaZsQ5LZvgCnt2QX3RX3641a6cvYdCZh-zVAMWzQjSyyI1AvYsRPulro9HJuKgM9nUzqD0JNSFufC8270AHZ0E6Hf3oF2jvt_Gn_-Yc9Yo52vXq7X_6oVT0FXy_l5d_DcvD0dC8AZS5aWMk4zZ1pjVXqtTMdw3jxBCTaNWCJKIhrxqhdt8vZJAvJKY9gHJPzvMAymULPl0_Mg4qJXcN3oigyZsFa5ovENOCzxF2N27_z9jbu41twhMHvPzrUef4HTwl3iWqqc4bsDybzM17eFydz_rTyYd68iD4dd8AvAJZmlWr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+of+the+Two-Sided+Space-Time+Fractional+Telegraph+Equation+Via+Chebyshev+Tau+Approximation&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Bhrawy%2C+Ali+H&rft.au=Zaky%2C+Mahmoud+A&rft.au=Machado%2C+Jos%C3%A9+A%3B+Tenreiro&rft.date=2017-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=174&rft.issue=1&rft.spage=321&rft_id=info:doi/10.1007%2Fs10957-016-0863-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |