Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation

The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 174; číslo 1; s. 321 - 341
Hlavní autoři: Bhrawy, Ali H., Zaky, Mahmoud A., Machado, José A. Tenreiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2017
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods.
AbstractList The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann-Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space-time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods.
Author Machado, José A. Tenreiro
Bhrawy, Ali H.
Zaky, Mahmoud A.
Author_xml – sequence: 1
  givenname: Ali H.
  surname: Bhrawy
  fullname: Bhrawy, Ali H.
  email: alibhrawy@yahoo.co.uk
  organization: Department of Mathematics, Faculty of Science, Beni-Suef University
– sequence: 2
  givenname: Mahmoud A.
  surname: Zaky
  fullname: Zaky, Mahmoud A.
  organization: Department of Applied Mathematics, National Research Centre
– sequence: 3
  givenname: José A. Tenreiro
  surname: Machado
  fullname: Machado, José A. Tenreiro
  organization: Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto
BookMark eNp9kLFOwzAURS1UJNrCB7BZYjbYsRM7Y1W1gFTB0MBqOY7TpEqT1E6AbvwDf8iXkDQMCAmmN7x7_K7PBIzKqjQAXBJ8TTDmN47g0OcIkwBhEVAkTsCY-JwiT3AxAmOMPQ9Rj4ZnYOLcFmMcCs7GoHxod8bmWhVwXRVtk1clrFLYZAZGrxVa54lJ4LpW2ny-f0T5zsClVbqPdURkCrOxqs7gYt-qI_ucKzjPTHxwmXmBkWrhrK5t9ZbvjvtzcJqqwpmL7zkFT8tFNL9Dq8fb-_lshTRlrEFa8JQkmnsJ9XkSJlwEfhwIKpRQihCcspjRNIgxYz4NfJaS2DDuB2nihcYPCZ2Cq-Hd7va-Na6R26q1XWcnSeh1LgTlfYoMKW0r56xJZW27ovYgCZa9VjlolZ1W2WuVomP4L0bnzfFvjVV58S_pDaTrrpQbY390-hP6AkcSjyw
CitedBy_id crossref_primary_10_1007_s40314_020_01160_4
crossref_primary_10_1016_j_chaos_2021_111530
crossref_primary_10_1515_phys_2016_0031
crossref_primary_10_1140_epjp_i2019_12845_1
crossref_primary_10_1007_s40995_023_01445_3
crossref_primary_10_1155_2022_6203440
crossref_primary_10_5269_bspm_44010
crossref_primary_10_1007_s12043_021_02113_0
crossref_primary_10_1016_S0034_4877_22_00011_8
crossref_primary_10_1002_mma_8263
crossref_primary_10_1088_1402_4896_ad7c93
crossref_primary_10_1007_s40314_017_0553_7
crossref_primary_10_2478_mjpaa_2021_0028
crossref_primary_10_1007_s10957_018_1389_z
crossref_primary_10_1088_1402_4896_ab61dd
crossref_primary_10_1186_s13662_019_2390_z
crossref_primary_10_1007_s40314_020_01363_9
crossref_primary_10_1177_1077546320971156
crossref_primary_10_1007_s40819_017_0475_5
crossref_primary_10_1007_s00009_019_1300_7
crossref_primary_10_1007_s40314_023_02474_9
crossref_primary_10_1007_s11075_021_01188_5
crossref_primary_10_1007_s42967_020_00060_y
crossref_primary_10_1016_j_camwa_2019_03_027
crossref_primary_10_1016_j_cnsns_2019_03_013
crossref_primary_10_1007_s40819_022_01343_z
crossref_primary_10_1007_s11071_016_2797_y
crossref_primary_10_32513_tbilisi_1569463232
crossref_primary_10_1016_j_matcom_2024_11_013
crossref_primary_10_1177_10775463211059364
crossref_primary_10_1177_00202940231222182
crossref_primary_10_1007_s11071_017_3654_3
crossref_primary_10_1007_s10013_019_00340_y
crossref_primary_10_1007_s11071_016_2714_4
crossref_primary_10_1007_s11071_017_3525_y
crossref_primary_10_1007_s40314_017_0488_z
crossref_primary_10_1007_s40314_018_0635_1
crossref_primary_10_1177_1461348419830226
crossref_primary_10_1177_1077546319840901
Cites_doi 10.1007/s11075-015-9990-9
10.1016/j.aml.2012.01.027
10.1177/1077546314566835
10.1016/j.jmaa.2007.06.023
10.1090/S0025-5718-2015-02917-2
10.1016/j.cnsns.2010.12.019
10.1007/s11075-010-9393-x
10.1137/080714130
10.1016/j.apm.2015.06.012
10.1007/s10092-013-0084-6
10.1007/s00440-003-0309-8
10.1016/j.camwa.2011.07.024
10.1016/j.cnsns.2010.05.027
10.1002/cnm.1293
10.1016/j.cpc.2008.11.012
10.1142/S0217979206033620
10.1016/j.nonrwa.2012.08.014
10.1007/s11071-015-2087-0
10.1016/j.cam.2014.09.028
10.1140/epjp/i2015-15033-5
10.1002/mma.3604
10.1016/j.apm.2011.05.011
10.1007/978-3-642-14574-2
10.2298/TSCI15S10S7A
10.1016/j.enganabound.2013.10.009
10.1051/m2an/2013091
10.1016/j.camwa.2010.12.072
10.1023/A:1016539022492
10.1016/j.sigpro.2014.04.015
10.1002/num.21822
10.1016/j.camwa.2012.01.020
10.1016/j.jcp.2014.12.043
10.1155/2015/289387
10.1016/j.cam.2013.05.022
10.1177/1077546315597815
10.1063/1.4794076
10.1016/j.cam.2013.09.040
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Journal of Optimization Theory and Applications is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Journal of Optimization Theory and Applications is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10957-016-0863-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 341
ExternalDocumentID 10_1007_s10957_016_0863_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c344t-c87f1dc72d357d9d7865b6838a8aa110f4b43f6b04453654f1be4756fd29e5913
IEDL.DBID M2P
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406014500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Tue Nov 04 21:57:34 EST 2025
Tue Nov 18 21:55:08 EST 2025
Sat Nov 29 06:02:27 EST 2025
Fri Feb 21 02:34:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Operational matrix
Fractional telegraph equation
Riesz fractional derivative
Fractional Klein–Gordon equation
Shifted Chebyshev Tau method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-c87f1dc72d357d9d7865b6838a8aa110f4b43f6b04453654f1be4756fd29e5913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10400.22/9406
PQID 1920228371
PQPubID 48247
PageCount 21
ParticipantIDs proquest_journals_1920228371
crossref_primary_10_1007_s10957_016_0863_8
crossref_citationtrail_10_1007_s10957_016_0863_8
springer_journals_10_1007_s10957_016_0863_8
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LuchkoYFractional wave equation and damped wavesJ. Math. Phys.201354031505305942710.1063/1.47940761302.35408
ChenJLiuFAnhVShenSLiuQLiaoCThe analytical solution and numerical solution of the fractional diffusion-wave equation with dampingAppl. Math. Comput.20122191737174829838801290.35306
BhrawyAHTahaTMMachadoJATA review of operational matrices and spectral techniques for fractional calculusNonlinear Dyn.20158110231052336713710.1007/s11071-015-2087-01348.65106
DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.2008471204226245285810.1137/08071413005686546
ShivanianESpectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equationMath. Methods Appl. Sci.20151339.65195
BhrawyAHAlofiASThe operational matrix of fractional integration for shifted Chebyshev polynomialsAppl. Math. Lett.2013262531297139410.1016/j.aml.2012.01.0271255.65147
KumarDPurohitSDSecerAAtanganaAOn generalized fractional kinetic equations involving generalized Bessel function of the first kindMath. Probl. Eng.20153317025
TianWYZhouHDengWA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.201529417031727333588810.1090/S0025-5718-2015-02917-21318.65058
OrsingherEZhaoXThe space-fractional telegraph equation and the related fractional telegraph processChin. Ann. Math.200324B11219665961033.60077
DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001
AtanganaANumerical analysis of time fractional three dimensional diffusion equationTherm. Sci.201519171210.2298/TSCI15S10S7A
ZhangWLiJYangYSpatial fractional telegraph equation for image structure preserving denoisingSignal Process.201510736837710.1016/j.sigpro.2014.04.015
MachadoJATKiryakovaVMainardiFRecent history of fractional calculusCommun. Nonlinear Sci. Numer. Simul.20111611401153273662210.1016/j.cnsns.2010.05.0271221.26002
DengWHHesthavenJSLocal discontinuous Galerkin methods for fractional diffusion equationsESAIM: M2AN20134718451864312337910.1051/m2an/20130911282.35400
TianWYDengWWuYPolynomial spectral collocation method for space fractional advection–diffusion equationNumer. Methods Partial Differ. Equ.2014302514535316397310.1002/num.218221287.65093
ShenSLiuFAnhVNumerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equationNumer. Algorithms201156383403277412110.1007/s11075-010-9393-x1214.65046
DasSFunctional Fractional Calculus for System Identification and Controls2008New YorkSpringer1154.26007
Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012
DingXLJiangYLAnalytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditionsNonlinear Anal. Real World Appl.20131410261033299113010.1016/j.nonrwa.2012.08.0141260.35241
BhrawyAHZakyMAVan GorderRAA space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Legendre spectral tau method for the two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional diffusion-wave equationNumer. Algorithms20151334.65166
MomaniSAnalytic and approximate solutions of the space- and time-fractional telegraph equationsAppl. Math. Comput.20051701126113421752731103.65335
DehghanMYousefiSALotfiAThe use of He’s variational iteration method for solving the telegraph and fractional telegraph equationsInt. J. Numer. Methods Biomed. Eng.201127219231279673010.1002/cnm.12931210.65173
OrsingherEBeghinLTime-fractional telegraph equation and telegraph processes with Brownian timeProbab. Theory Relat. Fields200412814116020272981049.60062
ChenSJiangXLiuFTurnerIHigh order unconditionally stable difference schemes for the Riesz space-fractional telegraph equationJ. Comput. Appl. Math.2015278119129328187810.1016/j.cam.2014.09.0281304.65202
KilbasAAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006San DiegoElsevier1092.45003
KanthASVRaviArunaKDifferential transform method for solving the linear and nonlinear Klein–Gordon equationComput. Phys. Commun.2009180708711267829110.1016/j.cpc.2008.11.0121198.81038
ZhangYXDingHFImproved matrix transform method for the Riesz space fractional reaction dispersion equationComput. Math. Appl.2014260266280313334810.1016/j.cam.2013.09.0401293.65115
AgrawalOPSolution for a fractional diffusion-wave equation defined in a bounded domainNonlinear Dyn.200229145155192647110.1023/A:10165390224921009.65085
JiangWLinYRepresentation of exact solution for the time-fractional telegraph equation in the reproducing kernel spaceCommun. Nonlinear Sci. Numer. Simul.20111636393645278781010.1016/j.cnsns.2010.12.0191223.35112
HosseiniVRChenWAvazzadehZNumerical solution of fractional telegraph equation by using radial basis functionsEng. Anal. Bound. Elem.2014383139313143110.1016/j.enganabound.2013.10.0091287.65085
WeiLDaiHZhangDSiZFully discrete local discontinuous Galerkin method for solving the fractional telegraph equationCalcolo201451175192317139510.1007/s10092-013-0084-61311.35331
MillerKRossBAn Introduction to the Fractional Calaulus and Fractional Differential Equations1993New YorkWiley0789.26002
ChenJLiuFAnhVAnalytical solution for the time-fractional telegraph equation by the method of separating variablesJ. Math. Anal. Appl.200833813641377238650310.1016/j.jmaa.2007.06.0231138.35373
DohaEHBhrawyAHEzz-EldienSSEfficient Chebyshev spectral methods for solving multi-term fractional orders differential equationsAppl. Math. Model.20113556625672282094210.1016/j.apm.2011.05.0111228.65126
LiCZhaoTDengWWuYOrthogonal spline collocation methods for the subdiffusion equationJ. Comput. Appl. Math.2014255517528309343910.1016/j.cam.2013.05.0221291.65307
AtanganaAOn the stability and convergence of the time-fractional variable order telegraph equationJ. Comput. Phys.2015293104114334246010.1016/j.jcp.2014.12.0431349.65263
LiuFZhuangPBurrageKNumerical methods and analysis for a class of fractional advection–dispersion modelsComput. Math. Appl.20126429903007298932910.1016/j.camwa.2012.01.0201268.65124
ZhaoZLiCFractional difference/finite element approximations for the time-space fractional telegraph equationAppl. Math. Comput.20122192975298829919971309.65101
MoaddyaKMomaniSHashimaIThe non-standard finite difference scheme for linear fractional PDEs in fluid mechanicsJ. Comput. Appl. Math.20116112091216277052310.1016/j.camwa.2010.12.072
BhrawyAHZakyMAMachadoJATEfficient Legendre spectral tau algorithm for solving two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional advection-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}dispersion equationJ. Vib. Control201506738248
BhrawyAHA highly accurate collocation algorithm for 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} and 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document} fractional percolation equationsJ. Vib. Control201506740982
HosseiniVRShivanianEChenWLocal integration of 2-D fractional telegraph equation via local radial point interpolant approximationEur. Phys. J. Plus2015130212110.1140/epjp/i2015-15033-5
DohaEHBhrawyAHEzz-EldienSSA Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional orderComput. Math. Appl.20116223642373283169810.1016/j.camwa.2011.07.0241231.65126
LiCDengWChaos synchronization of fractional-order differential systemsInt. J. Mod. Phys. B20062007791803221525210.1142/S02179792060336201101.37025
AH Bhrawy (863_CR20) 2015
A Atangana (863_CR15) 2015; 293
EH Doha (863_CR44) 2011; 62
M Dehghan (863_CR32) 2011; 27
S Shen (863_CR38) 2011; 56
F Liu (863_CR39) 2012; 64
YX Zhang (863_CR40) 2014; 260
AH Bhrawy (863_CR19) 2015
WY Tian (863_CR25) 2014; 30
ASVRavi Kanth (863_CR37) 2009; 180
E Orsingher (863_CR29) 2003; 24B
E Orsingher (863_CR28) 2004; 128
D Kumar (863_CR4) 2015
E Shivanian (863_CR24) 2015
C Li (863_CR5) 2006; 20
XL Ding (863_CR26) 2013; 14
WH Deng (863_CR14) 2008; 47
W Jiang (863_CR27) 2011; 16
J Chen (863_CR31) 2008; 338
AAA Kilbas (863_CR2) 2006
L Wei (863_CR18) 2014; 51
K Diethelm (863_CR6) 2010
AH Bhrawy (863_CR8) 2015; 81
VR Hosseini (863_CR34) 2014; 38
VR Hosseini (863_CR23) 2015; 130
863_CR17
WY Tian (863_CR12) 2015; 294
EH Doha (863_CR35) 2011; 35
J Chen (863_CR42) 2012; 219
K Moaddya (863_CR33) 2011; 61
C Li (863_CR16) 2014; 255
K Miller (863_CR7) 1993
AH Bhrawy (863_CR36) 2013; 26
WH Deng (863_CR13) 2013; 47
AH Bhrawy (863_CR43) 2015
A Atangana (863_CR10) 2015; 19
Z Zhao (863_CR9) 2012; 219
S Chen (863_CR11) 2015; 278
S Das (863_CR1) 2008
JAT Machado (863_CR3) 2011; 16
OP Agrawal (863_CR21) 2002; 29
S Momani (863_CR30) 2005; 170
Y Luchko (863_CR41) 2013; 54
W Zhang (863_CR22) 2015; 107
References_xml – reference: KumarDPurohitSDSecerAAtanganaAOn generalized fractional kinetic equations involving generalized Bessel function of the first kindMath. Probl. Eng.20153317025
– reference: LiCZhaoTDengWWuYOrthogonal spline collocation methods for the subdiffusion equationJ. Comput. Appl. Math.2014255517528309343910.1016/j.cam.2013.05.0221291.65307
– reference: AgrawalOPSolution for a fractional diffusion-wave equation defined in a bounded domainNonlinear Dyn.200229145155192647110.1023/A:10165390224921009.65085
– reference: ShivanianESpectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equationMath. Methods Appl. Sci.20151339.65195
– reference: MoaddyaKMomaniSHashimaIThe non-standard finite difference scheme for linear fractional PDEs in fluid mechanicsJ. Comput. Appl. Math.20116112091216277052310.1016/j.camwa.2010.12.072
– reference: OrsingherEBeghinLTime-fractional telegraph equation and telegraph processes with Brownian timeProbab. Theory Relat. Fields200412814116020272981049.60062
– reference: LuchkoYFractional wave equation and damped wavesJ. Math. Phys.201354031505305942710.1063/1.47940761302.35408
– reference: ZhangYXDingHFImproved matrix transform method for the Riesz space fractional reaction dispersion equationComput. Math. Appl.2014260266280313334810.1016/j.cam.2013.09.0401293.65115
– reference: DehghanMYousefiSALotfiAThe use of He’s variational iteration method for solving the telegraph and fractional telegraph equationsInt. J. Numer. Methods Biomed. Eng.201127219231279673010.1002/cnm.12931210.65173
– reference: LiCDengWChaos synchronization of fractional-order differential systemsInt. J. Mod. Phys. B20062007791803221525210.1142/S02179792060336201101.37025
– reference: TianWYDengWWuYPolynomial spectral collocation method for space fractional advection–diffusion equationNumer. Methods Partial Differ. Equ.2014302514535316397310.1002/num.218221287.65093
– reference: OrsingherEZhaoXThe space-fractional telegraph equation and the related fractional telegraph processChin. Ann. Math.200324B11219665961033.60077
– reference: TianWYZhouHDengWA class of second order difference approximations for solving space fractional diffusion equationsMath. Comput.201529417031727333588810.1090/S0025-5718-2015-02917-21318.65058
– reference: LiuFZhuangPBurrageKNumerical methods and analysis for a class of fractional advection–dispersion modelsComput. Math. Appl.20126429903007298932910.1016/j.camwa.2012.01.0201268.65124
– reference: AtanganaANumerical analysis of time fractional three dimensional diffusion equationTherm. Sci.201519171210.2298/TSCI15S10S7A
– reference: HosseiniVRShivanianEChenWLocal integration of 2-D fractional telegraph equation via local radial point interpolant approximationEur. Phys. J. Plus2015130212110.1140/epjp/i2015-15033-5
– reference: BhrawyAHZakyMAMachadoJATEfficient Legendre spectral tau algorithm for solving two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional advection-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}dispersion equationJ. Vib. Control201506738248
– reference: DohaEHBhrawyAHEzz-EldienSSA Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional orderComput. Math. Appl.20116223642373283169810.1016/j.camwa.2011.07.0241231.65126
– reference: DohaEHBhrawyAHEzz-EldienSSEfficient Chebyshev spectral methods for solving multi-term fractional orders differential equationsAppl. Math. Model.20113556625672282094210.1016/j.apm.2011.05.0111228.65126
– reference: KanthASVRaviArunaKDifferential transform method for solving the linear and nonlinear Klein–Gordon equationComput. Phys. Commun.2009180708711267829110.1016/j.cpc.2008.11.0121198.81038
– reference: ChenJLiuFAnhVAnalytical solution for the time-fractional telegraph equation by the method of separating variablesJ. Math. Anal. Appl.200833813641377238650310.1016/j.jmaa.2007.06.0231138.35373
– reference: ShenSLiuFAnhVNumerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equationNumer. Algorithms201156383403277412110.1007/s11075-010-9393-x1214.65046
– reference: BhrawyAHTahaTMMachadoJATA review of operational matrices and spectral techniques for fractional calculusNonlinear Dyn.20158110231052336713710.1007/s11071-015-2087-01348.65106
– reference: DengWHFinite element method for the space and time fractional Fokker–Planck equationSIAM J. Numer. Anal.2008471204226245285810.1137/08071413005686546
– reference: ZhaoZLiCFractional difference/finite element approximations for the time-space fractional telegraph equationAppl. Math. Comput.20122192975298829919971309.65101
– reference: Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012
– reference: BhrawyAHAlofiASThe operational matrix of fractional integration for shifted Chebyshev polynomialsAppl. Math. Lett.2013262531297139410.1016/j.aml.2012.01.0271255.65147
– reference: BhrawyAHA highly accurate collocation algorithm for 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} and 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document} fractional percolation equationsJ. Vib. Control201506740982
– reference: MillerKRossBAn Introduction to the Fractional Calaulus and Fractional Differential Equations1993New YorkWiley0789.26002
– reference: ChenJLiuFAnhVShenSLiuQLiaoCThe analytical solution and numerical solution of the fractional diffusion-wave equation with dampingAppl. Math. Comput.20122191737174829838801290.35306
– reference: WeiLDaiHZhangDSiZFully discrete local discontinuous Galerkin method for solving the fractional telegraph equationCalcolo201451175192317139510.1007/s10092-013-0084-61311.35331
– reference: DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001
– reference: HosseiniVRChenWAvazzadehZNumerical solution of fractional telegraph equation by using radial basis functionsEng. Anal. Bound. Elem.2014383139313143110.1016/j.enganabound.2013.10.0091287.65085
– reference: MachadoJATKiryakovaVMainardiFRecent history of fractional calculusCommun. Nonlinear Sci. Numer. Simul.20111611401153273662210.1016/j.cnsns.2010.05.0271221.26002
– reference: ChenSJiangXLiuFTurnerIHigh order unconditionally stable difference schemes for the Riesz space-fractional telegraph equationJ. Comput. Appl. Math.2015278119129328187810.1016/j.cam.2014.09.0281304.65202
– reference: MomaniSAnalytic and approximate solutions of the space- and time-fractional telegraph equationsAppl. Math. Comput.20051701126113421752731103.65335
– reference: JiangWLinYRepresentation of exact solution for the time-fractional telegraph equation in the reproducing kernel spaceCommun. Nonlinear Sci. Numer. Simul.20111636393645278781010.1016/j.cnsns.2010.12.0191223.35112
– reference: DasSFunctional Fractional Calculus for System Identification and Controls2008New YorkSpringer1154.26007
– reference: KilbasAAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006San DiegoElsevier1092.45003
– reference: DengWHHesthavenJSLocal discontinuous Galerkin methods for fractional diffusion equationsESAIM: M2AN20134718451864312337910.1051/m2an/20130911282.35400
– reference: ZhangWLiJYangYSpatial fractional telegraph equation for image structure preserving denoisingSignal Process.201510736837710.1016/j.sigpro.2014.04.015
– reference: DingXLJiangYLAnalytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditionsNonlinear Anal. Real World Appl.20131410261033299113010.1016/j.nonrwa.2012.08.0141260.35241
– reference: AtanganaAOn the stability and convergence of the time-fractional variable order telegraph equationJ. Comput. Phys.2015293104114334246010.1016/j.jcp.2014.12.0431349.65263
– reference: BhrawyAHZakyMAVan GorderRAA space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Legendre spectral tau method for the two-sided space-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}time Caputo fractional diffusion-wave equationNumer. Algorithms20151334.65166
– year: 2015
  ident: 863_CR20
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-9990-9
– volume: 26
  start-page: 25
  year: 2013
  ident: 863_CR36
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2012.01.027
– volume-title: An Introduction to the Fractional Calaulus and Fractional Differential Equations
  year: 1993
  ident: 863_CR7
– year: 2015
  ident: 863_CR43
  publication-title: J. Vib. Control
  doi: 10.1177/1077546314566835
– volume: 338
  start-page: 1364
  year: 2008
  ident: 863_CR31
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.06.023
– volume: 294
  start-page: 1703
  year: 2015
  ident: 863_CR12
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2015-02917-2
– volume: 219
  start-page: 2975
  year: 2012
  ident: 863_CR9
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 3639
  year: 2011
  ident: 863_CR27
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.12.019
– volume: 56
  start-page: 383
  year: 2011
  ident: 863_CR38
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-010-9393-x
– volume: 47
  start-page: 204
  issue: 1
  year: 2008
  ident: 863_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080714130
– ident: 863_CR17
  doi: 10.1016/j.apm.2015.06.012
– volume: 51
  start-page: 175
  year: 2014
  ident: 863_CR18
  publication-title: Calcolo
  doi: 10.1007/s10092-013-0084-6
– volume: 128
  start-page: 141160
  year: 2004
  ident: 863_CR28
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-003-0309-8
– volume: 62
  start-page: 2364
  year: 2011
  ident: 863_CR44
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.07.024
– volume: 16
  start-page: 1140
  year: 2011
  ident: 863_CR3
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.05.027
– volume: 27
  start-page: 219
  year: 2011
  ident: 863_CR32
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1293
– volume: 180
  start-page: 708
  year: 2009
  ident: 863_CR37
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.11.012
– volume: 20
  start-page: 791
  issue: 07
  year: 2006
  ident: 863_CR5
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979206033620
– volume: 14
  start-page: 1026
  year: 2013
  ident: 863_CR26
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2012.08.014
– volume: 81
  start-page: 1023
  year: 2015
  ident: 863_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2087-0
– volume: 278
  start-page: 119
  year: 2015
  ident: 863_CR11
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.09.028
– volume: 130
  start-page: 1
  issue: 2
  year: 2015
  ident: 863_CR23
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2015-15033-5
– year: 2015
  ident: 863_CR24
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3604
– volume: 35
  start-page: 5662
  year: 2011
  ident: 863_CR35
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.05.011
– volume-title: The Analysis of Fractional Differential Equations
  year: 2010
  ident: 863_CR6
  doi: 10.1007/978-3-642-14574-2
– volume-title: Functional Fractional Calculus for System Identification and Controls
  year: 2008
  ident: 863_CR1
– volume: 19
  start-page: 7
  issue: 1
  year: 2015
  ident: 863_CR10
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI15S10S7A
– volume: 38
  start-page: 31
  year: 2014
  ident: 863_CR34
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2013.10.009
– volume: 47
  start-page: 1845
  year: 2013
  ident: 863_CR13
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2013091
– volume: 61
  start-page: 1209
  year: 2011
  ident: 863_CR33
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.camwa.2010.12.072
– volume: 29
  start-page: 145
  year: 2002
  ident: 863_CR21
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016539022492
– volume: 107
  start-page: 368
  year: 2015
  ident: 863_CR22
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.04.015
– volume: 30
  start-page: 514
  issue: 2
  year: 2014
  ident: 863_CR25
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21822
– volume: 64
  start-page: 2990
  year: 2012
  ident: 863_CR39
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.01.020
– volume: 293
  start-page: 104
  year: 2015
  ident: 863_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.043
– year: 2015
  ident: 863_CR4
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/289387
– volume: 255
  start-page: 517
  year: 2014
  ident: 863_CR16
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.05.022
– year: 2015
  ident: 863_CR19
  publication-title: J. Vib. Control
  doi: 10.1177/1077546315597815
– volume: 24B
  start-page: 1
  year: 2003
  ident: 863_CR29
  publication-title: Chin. Ann. Math.
– volume: 54
  start-page: 031505
  year: 2013
  ident: 863_CR41
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4794076
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 863_CR2
– volume: 170
  start-page: 1126
  year: 2005
  ident: 863_CR30
  publication-title: Appl. Math. Comput.
– volume: 219
  start-page: 1737
  year: 2012
  ident: 863_CR42
  publication-title: Appl. Math. Comput.
– volume: 260
  start-page: 266
  year: 2014
  ident: 863_CR40
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.cam.2013.09.040
SSID ssj0009874
Score 2.3888395
Snippet The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted...
The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann-Liouville fractional integral, for shifted...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms Accuracy
Algebra
Algorithms
Applications of Mathematics
Boundary conditions
Calculus of Variations and Optimal Control; Optimization
Chebyshev approximation
Dirichlet problem
Engineering
Iterative methods
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Operations Research/Decision Theory
Optimization
Polynomials
Simplification
Spacetime
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKyoEeoBQQgbTygROVpd211x4fo6gRB4iqJkS5rbz-EZGiBPLXHvsOvCFPgr27btIKkMrR2rFleeydsWe-bxD6QEFQsDYlRjBGmOL-SJXCEJerRGnlSqcroPBnMRjAZCIvGxz3Kma7x5Bk9afeA7vJPKRJ-hswcErgCTr01g5CvYar4XjHtAuRejkjNKMyhjL_NMR9Y7TzMB8ERStb03_xX7M8Rs8b1xJ3673wEh3Y-Qk62iMc9K0vdyytq1doPtjU8ZoZjq9jeOGwl8Cj6wUZTo01eOgv1fbX7c-AFcH9ZY2D8D1GsWAFvvhR04Xj8VTh3jcbXrztFo_UBncDY_nNtIZHvkZf-xej3ifS1F8gmjK2JhqES40WmaG5MNII4HnJgYICpbzb4FjJqONlwlhOec5cWlomcu5MJm0uU_oGteaLuX2LcMJLSDhYJbVmWgFI5WhKjQJKDZO6jZKoiEI35OShRsas2NEqh4UtQkJaWNgC2ujjXZfvNTPHv4Q7UbtFc0hXhXdua_aftI3Oozb3Pv9tsHePkn6PnmXBFahSfDuotV5u7Cl6qrfr6Wp5Vu3d3-7H6eE
  priority: 102
  providerName: Springer Nature
Title Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation
URI https://link.springer.com/article/10.1007/s10957-016-0863-8
https://www.proquest.com/docview/1920228371
Volume 174
WOSCitedRecordID wos000406014500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFH7qwoEeaNnUQFv5wAlkMTPeT6hEiZAgYdSEUriMPF5EpChps5T-_NqzNAWJXrg8yZo31kjf2H5-y_cA3hApiHQuxVZQiqnmYUmVwmLPdKKN9qU3VaHwFzEcyosLlTcOt2WTVtnuidVGbecm-sjfB0ukpmpJP1xe4dg1KkZXmxYa27AbLJs0pnQNsnxDuitbFuYMk4yoNqpZl84pFpMuw31acoLln-fSxtj8Kz5aHTv9_f_94AN40hic6LT-Q57Clps9g717NIRhNLjjbl0-h-lwXUdxpqj1maG5R0EDjX_P8WhinUWjcNV2ONaPoP6iro0I-uO2iQXqXdUU4uh8olH3l4tecHeNxnqNTiOL-c2kLpl8Ad_6vXH3E256MmBDKF1hI4VPrRGZJUxYZYXkrOSSSC21DqaEpyUlnpcJpYxwRn1aOioY9zZTjqmUvISd2XzmDgElvJQJl04rY6jRUirtSUqsloRYqkwHkhaRwjSE5bFvxrTYUC1HEIuYpBZBLGQH3t69clmzdTykfNQCVzQLd1lsUOvAuxb6e4__Ndmrhyd7DY-zaA9Ueb5HsLNarN0xPDLXq8lycQLb4vuPE9j92BvmZ2H0WeAgB0k3yuxrJfMoxSjInP0M8mx0fgvBnvrN
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCOWFvABLiCLJHb8OFSoKl216nZVqQH1Fhw_xEqr3e0-WvhT_Y2143W3INFbDxyjOJaSfDMee-b7BuA9EZwIa3NsOKWYKuZNquEGu1JlSivXON0ShXu83xcnJ_JoDS4SFyaUVSaf2DpqM9bhjPyzj0SiVEv-ZXKKQ9eokF1NLTQiLA7s73O_ZZtt7X_1__dDUXR3q509vOwqgDWhdI614C43mheGlNxIwwUrGyaIUEIpvxg62lDiWJNRWhJWUpc3lvKSOVNIW8qc-HnvwF0alMVCqWBxtBL5FUn1ucCkIDJlUSNVT5ahyNPv3wUjWPy5Dq6C27_yse0y1338v32gJ_BoGVCj7WgBT2HNjp7Bw2syi_7q8EqbdvYchv1FzFINUToTRGOH_AhUnY_x8cBYg44nSlsc-DGoO43cDz--Sk060O5plEhH3wcK7fy04ZTfnqFKLdB2UGn_NYiU0Bfw7VZe_iWsj8Yj-wpQxhqRMWGV1JpqJYRUjuTEKEGIoVJ3IEsIqPVSkD30BRnWKynpAJo6FOEF0NSiAx-vHplENZKbBm8moNRLxzSrVyjpwKcEtWu3_zXZ65snewf396rDXt3b7x9swIMixD5tTfMmrM-nC_sG7umz-WA2fdtaDIIft43AS6LdTbI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA98EZdKOADXEBWk9iO7QNCVdsVVctqpS6o4pI6foiVVrvbfbTw1_h12HHcLUj01gPHKI6lJN-M5_kNwBsiOBHW5thwSjFVpRepmhvsmMqUVq52umkUPuK9njg5kf01-JV6YUJZZdKJjaI2Ex1i5NveEolULfm2a8si-nvdj9MzHCZIhUxrGqcRIXJof154923-4WDP_-u3RdHdH-x-wu2EAawJpQusBXe50bwwhHEjDRclq0tBhBJK-YPR0ZoSV9YZpYyUjLq8tpSz0plCWiZz4ve9Bbe59zFDOWGffVsR_orEAF1gUhCZMqqxbU-yUPDpfXlREiz-PBNXhu5fudnmyOs--J8_1kO43xraaCdKxiNYs-PHsHGFftFffb7krJ0_gVFvGbNXI5RihWjikF-BBhcTfDw01qDjqdIWh74Z1J3FnhC_fpCGd6D9s0idjr4OFdr9bkP0356jgVqincDe_mMYW0WfwpcbeflnsD6ejO0moKysRVYKq6TWVCshpHIkJ0YJQgyVugNZQkOlW6L2MC9kVK0opgOAqlCcFwBUiQ68u3xkGllKrlu8lUBTtQprXq0Q04H3CXZXbv9rs-fXb_Ya7nrgVUcHvcMXcK8IJlFT6rwF64vZ0r6EO_p8MZzPXjXCg-D0pgH4GxUIVp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+of+the+Two-Sided+Space-Time+Fractional+Telegraph+Equation+Via+Chebyshev+Tau+Approximation&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Bhrawy%2C+Ali+H&rft.au=Zaky%2C+Mahmoud+A&rft.au=Machado%2C+Jos%C3%A9+A%3B+Tenreiro&rft.date=2017-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=174&rft.issue=1&rft.spage=321&rft_id=info:doi/10.1007%2Fs10957-016-0863-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon