Calculating statistical power for meta-analysis using metapower

Meta-analysis is an influential evidence synthesis technique that summarizes a body of research. Though impactful, meta-analyses fundamentally depend on the literature being sufficiently large to generate meaningful conclusions. Power analysis plays an important role in determining the number of stu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Tutorials in quantitative methods for psychology Ročník 17; číslo 1; s. 24 - 39
Hlavní autor: Griffin, Jason W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Université d'Ottawa 01.03.2021
Témata:
ISSN:1913-4126, 1913-4126
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Meta-analysis is an influential evidence synthesis technique that summarizes a body of research. Though impactful, meta-analyses fundamentally depend on the literature being sufficiently large to generate meaningful conclusions. Power analysis plays an important role in determining the number of studies required to conduct a substantive meta-analysis. Despite this, power analysis is rarely conducted or reported in published meta-analyses. A significant barrier to the widespread implementation of power analysis is the lack of available and accessible software for calculating statistical power for meta-analysis. In this paper, I provide an introduction to power analysis and present a practical tutorial for calculating statistical power using the R package metapower. The main functionality includes computing statistical power for summary effect sizes, tests of homogeneity, categorical moderator analysis, and subgroup analysis. This software is free, easy-to-use, and can be integrated into a continuous work flow with other meta-analysis packages in R.
ISSN:1913-4126
1913-4126
DOI:10.20982/tqmp.17.1.p024