Robust Neural Control of Discrete Time Uncertain Nonlinear Systems Using Sliding Mode Backpropagation Training Algorithm
This work deals with robust inverse neural control strategy for a class of single-input single-output (SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model (DNM) is used to learn the behavior of the syste...
Uloženo v:
| Vydáno v: | Machine intelligence research (Print) Ročník 16; číslo 2; s. 213 - 225 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Springer Nature B.V
01.04.2019
|
| Témata: | |
| ISSN: | 2153-182X, 2153-1838 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work deals with robust inverse neural control strategy for a class of single-input single-output (SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model (DNM) is used to learn the behavior of the system, then, an inverse neural model (INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation (BP) algorithm. In this work, the sliding mode-backpropagation (SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2153-182X 2153-1838 |
| DOI: | 10.1007/s11633-017-1062-2 |