Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus li...
Gespeichert in:
| Veröffentlicht in: | Energy reports Jg. 12; S. 2676 - 2689 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2024
|
| Schlagworte: | |
| ISSN: | 2352-4847, 2352-4847 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!