Abduction with probabilistic logic programming under the distribution semantics
In Probabilistic Abductive Logic Programming we are given a probabilistic logic program, a set of abducible facts, and a set of constraints. Inference in probabilistic abductive logic programs aims to find a subset of the abducible facts that is compatible with the constraints and that maximizes the...
Gespeichert in:
| Veröffentlicht in: | International journal of approximate reasoning Jg. 142; S. 41 - 63 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0888-613X, 1873-4731 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In Probabilistic Abductive Logic Programming we are given a probabilistic logic program, a set of abducible facts, and a set of constraints. Inference in probabilistic abductive logic programs aims to find a subset of the abducible facts that is compatible with the constraints and that maximizes the joint probability of the query and the constraints. In this paper, we extend the PITA reasoner with an algorithm to perform abduction on probabilistic abductive logic programs exploiting Binary Decision Diagrams. Tests on several synthetic datasets show the effectiveness of our approach. |
|---|---|
| ISSN: | 0888-613X 1873-4731 |
| DOI: | 10.1016/j.ijar.2021.11.003 |