Abduction with probabilistic logic programming under the distribution semantics

In Probabilistic Abductive Logic Programming we are given a probabilistic logic program, a set of abducible facts, and a set of constraints. Inference in probabilistic abductive logic programs aims to find a subset of the abducible facts that is compatible with the constraints and that maximizes the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning Jg. 142; S. 41 - 63
Hauptverfasser: Azzolini, Damiano, Bellodi, Elena, Ferilli, Stefano, Riguzzi, Fabrizio, Zese, Riccardo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2022
Schlagworte:
ISSN:0888-613X, 1873-4731
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Probabilistic Abductive Logic Programming we are given a probabilistic logic program, a set of abducible facts, and a set of constraints. Inference in probabilistic abductive logic programs aims to find a subset of the abducible facts that is compatible with the constraints and that maximizes the joint probability of the query and the constraints. In this paper, we extend the PITA reasoner with an algorithm to perform abduction on probabilistic abductive logic programs exploiting Binary Decision Diagrams. Tests on several synthetic datasets show the effectiveness of our approach.
ISSN:0888-613X
1873-4731
DOI:10.1016/j.ijar.2021.11.003