Discrete Total Variation with Finite Elements and Applications to Imaging

The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous (CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is defined. DTV has favorable properties, compared to the origi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical imaging and vision Ročník 61; číslo 4; s. 411 - 431
Hlavní autoři: Herrmann, Marc, Herzog, Roland, Schmidt, Stephan, Vidal-Núñez, José, Wachsmuth, Gerd
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2019
Springer Nature B.V
Témata:
ISSN:0924-9907, 1573-7683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous (CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is defined. DTV has favorable properties, compared to the original TV-seminorm for finite element functions. These include a convenient dual representation in terms of the supremum over the space of Raviart–Thomas finite element functions, subject to a set of simple constraints. It can therefore be shown that a variety of algorithms for classical image reconstruction problems, including TV- L 2 denoising and inpainting, can be implemented in low- and higher-order finite element spaces with the same efficiency as their counterparts originally developed for images on Cartesian grids.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-018-0852-7