Continuity and inversion of the wavelet transform
Using a converse form of the Schwarz inequality L 2 -continuity results for the wavelet transform and its adjoint are obtained. A relation between the wavelet transform and the Fourier transform is established. The self-adjoint case is investigated and a complex inversion formula for the wavelet tra...
Uložené v:
| Vydané v: | Integral transforms and special functions Ročník 6; číslo 1-4; s. 85 - 93 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Gordon and Breach Science Publishers
01.03.1998
|
| Predmet: | |
| ISSN: | 1065-2469, 1476-8291 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Using a converse form of the Schwarz inequality L
2
-continuity results for the wavelet transform and its adjoint are obtained. A relation between the wavelet transform and the Fourier transform is established. The self-adjoint case is investigated and a complex inversion formula for the wavelet transform is derived. Wavelet transform of generalised functions is investigated. |
|---|---|
| ISSN: | 1065-2469 1476-8291 |
| DOI: | 10.1080/10652469808819153 |