A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness

We present simple, self-contained proofs of correctness for algorithms for linearity testing and program checking of linear functions on finite subsets of integers represented as n -bit numbers. In addition we explore a generalization of self-testing to homomorphisms on a multidimensional vector spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems Jg. 59; H. 1; S. 99 - 111
Hauptverfasser: Devadas, Sheela, Rubinfeld, Ronitt
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2016
Springer Nature B.V
Schlagworte:
ISSN:1432-4350, 1433-0490
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present simple, self-contained proofs of correctness for algorithms for linearity testing and program checking of linear functions on finite subsets of integers represented as n -bit numbers. In addition we explore a generalization of self-testing to homomorphisms on a multidimensional vector space. We show that our self-testing algorithm for the univariate case can be directly generalized to vector space domains. The number of queries made by our algorithms is independent of domain size.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-015-9639-z