A multigrid waveform relaxation method for solving the poroelasticity equations
In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based o...
Gespeichert in:
| Veröffentlicht in: | Computational & applied mathematics Jg. 37; H. 4; S. 4805 - 4820 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.09.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0101-8205, 2238-3603, 1807-0302 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based on a point-wise Vanka smoother that couples the pressure variable at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed to theoretically analyze the convergence of the multigrid waveform relaxation algorithm. This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic problems, with the non-standard analysis for overlapping smoothers. The practical utility of the method is illustrated through several numerical experiments in one and two dimensions. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0101-8205 2238-3603 1807-0302 |
| DOI: | 10.1007/s40314-018-0603-9 |