A multigrid waveform relaxation method for solving the poroelasticity equations

In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational & applied mathematics Ročník 37; číslo 4; s. 4805 - 4820
Hlavní autori: Franco, S. R., Rodrigo, C., Gaspar, F. J., Pinto, M. A. V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2018
Springer Nature B.V
Predmet:
ISSN:0101-8205, 2238-3603, 1807-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based on a point-wise Vanka smoother that couples the pressure variable at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed to theoretically analyze the convergence of the multigrid waveform relaxation algorithm. This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic problems, with the non-standard analysis for overlapping smoothers. The practical utility of the method is illustrated through several numerical experiments in one and two dimensions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0101-8205
2238-3603
1807-0302
DOI:10.1007/s40314-018-0603-9