Finding k-secluded trees faster

We revisit the k-Secluded Tree problem. Given a vertex-weighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2O(klog⁡k)⋅nO(1), improving on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences Jg. 138; S. 103461
Hauptverfasser: Donkers, Huib, Jansen, Bart M.P., de Kroon, Jari J.H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.12.2023
Schlagworte:
ISSN:0022-0000, 1090-2724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the k-Secluded Tree problem. Given a vertex-weighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2O(klog⁡k)⋅nO(1), improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a k-secluded tree by branching on vertices in the open neighborhood of the current tree T. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any k-secluded supertree T′⊇T once the open neighborhood of T becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight k-secluded trees, which allows us to count them as well.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2023.05.006