Novel distance measures of hesitant fuzzy sets and their applications in clustering analysis

Distance and similarity measures are very important in clustering, pattern recognition, decision-making and other scientific fields. For the existing hesitant fuzzy distance, most of them do not consider the hesitance degree. Even if the hesitance degree is considered, only the degree of dispersion...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of engineering and applied science (Online) Ročník 69; číslo 1; s. 115 - 16
Hlavní autoři: Liao, Fuping, Li, Wu, Zhou, Xiaoqiang, Liu, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1110-1903, 2536-9512
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distance and similarity measures are very important in clustering, pattern recognition, decision-making and other scientific fields. For the existing hesitant fuzzy distance, most of them do not consider the hesitance degree. Even if the hesitance degree is considered, only the degree of dispersion or the number of hesitant fuzzy values are considered. Aiming at these shortages, a new hesitance degree is defined, which has better accuracy and applicability. Then, some hesitant fuzzy distance measures based on the proposed hesitance degree are proposed, which can overcome some shortcomings of the existing distance measures. Finally, the new hesitant fuzzy distance is applied to the hierarchical hesitant fuzzy k-means clustering algorithm, and an illustration example is given to illustrate the effectiveness of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1110-1903
2536-9512
DOI:10.1186/s44147-022-00095-3