Multi-parameter inverse analysis of concrete dams using kernel extreme learning machines-based response surface model

•A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures Vol. 256; p. 113999
Main Authors: Kang, Fei, Liu, Xi, Li, Junjie, Li, Hongjun
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.04.2022
Elsevier BV
Subjects:
ISSN:0141-0296, 1873-7323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter identification.•Two cases and two real-world concrete dams are utilized to verify the engineering applicability of the proposed approach.•The proposed model combined with the Jaya algorithm shows the most promising results. Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost.
AbstractList Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost.
•A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter identification.•Two cases and two real-world concrete dams are utilized to verify the engineering applicability of the proposed approach.•The proposed model combined with the Jaya algorithm shows the most promising results. Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost.
ArticleNumber 113999
Author Li, Junjie
Li, Hongjun
Kang, Fei
Liu, Xi
Author_xml – sequence: 1
  givenname: Fei
  surname: Kang
  fullname: Kang, Fei
  email: kangfei@dlut.edu.cn, kangfei2009@163.com
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China
– sequence: 2
  givenname: Xi
  surname: Liu
  fullname: Liu, Xi
  email: liuxidlut@163.com
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China
– sequence: 3
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
  email: lijunjie@dlut.edu.cn
  organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China
– sequence: 4
  givenname: Hongjun
  surname: Li
  fullname: Li, Hongjun
  email: lihj@iwhr.com
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
BookMark eNqNkMtuFDEQRS0UpEwSviGWWPfgR093e8EiinhJQWxgbTl2OXjotocqd0T-Ph4NYsEGVpbK515VnQt2lksGxq6l2Eohhzf7LeQHqrj6ulVCqa2U2hjzgm3kNOpu1EqfsY2QveyEMsM5uyDaCyHUNIkNWz-vc03dwaFboALylB8BCbjLbn6iRLxE7kv22H55cAvxlVJ-4D8AM8wcflWEBfgMDvNxvjj_PWWg7t4RBI5Ah5JbH60YnQe-lADzFXsZ3Uzw6vd7yb69f_f19mN39-XDp9ubu87rXtcuxDA5N_YmTpM8btw77Z2UEXaD9EHKILQYehn1qEA2DsQOdDQQVN_Ae33JXp96D1h-rkDV7suK7TKyauiNMmY3qEa9PVEeCxFCtD5VV1PJFV2arRT2aNru7R_T9mjanky3_PhX_oBpcfj0H8mbUxKahMcEaMknyB5CQmhsKOmfHc8kXaMV
CitedBy_id crossref_primary_10_1177_14759217221117478
crossref_primary_10_1016_j_engstruct_2025_119794
crossref_primary_10_3390_app13095407
crossref_primary_10_1007_s10706_025_03341_6
crossref_primary_10_1016_j_undsp_2025_03_001
crossref_primary_10_1016_j_engstruct_2022_114687
crossref_primary_10_1016_j_aei_2023_102016
crossref_primary_10_1016_j_aei_2025_103559
crossref_primary_10_1016_j_aei_2023_101881
crossref_primary_10_1016_j_ndteint_2024_103271
crossref_primary_10_3390_app12104991
crossref_primary_10_1016_j_istruc_2023_02_076
crossref_primary_10_1016_j_engstruct_2022_115353
crossref_primary_10_3390_w16010119
crossref_primary_10_1016_j_apt_2022_103898
crossref_primary_10_3390_w14193051
crossref_primary_10_1016_j_compgeo_2023_105814
crossref_primary_10_1002_nag_3812
crossref_primary_10_1016_j_compgeo_2023_105555
crossref_primary_10_1007_s00603_025_04401_2
crossref_primary_10_1016_j_tust_2025_106416
crossref_primary_10_3390_math12071066
crossref_primary_10_1007_s10853_025_10913_7
crossref_primary_10_1007_s00466_023_02320_z
crossref_primary_10_1016_j_istruc_2025_108285
crossref_primary_10_3390_su151310356
crossref_primary_10_1002_qre_3486
crossref_primary_10_1016_j_engstruct_2025_119884
crossref_primary_10_1007_s13349_023_00704_6
crossref_primary_10_1016_j_aei_2022_101855
crossref_primary_10_1177_14759217251341527
crossref_primary_10_1016_j_aei_2024_102922
crossref_primary_10_1016_j_istruc_2024_107605
crossref_primary_10_1016_j_aei_2022_101853
crossref_primary_10_1016_j_aei_2025_103306
crossref_primary_10_1016_j_compstruc_2023_107018
crossref_primary_10_1016_j_compgeo_2024_106597
crossref_primary_10_3390_w16202979
crossref_primary_10_1007_s13369_023_08553_7
crossref_primary_10_1016_j_icheatmasstransfer_2025_109502
crossref_primary_10_3390_su151310627
crossref_primary_10_1016_j_aei_2023_102060
crossref_primary_10_1016_j_mtcomm_2025_111501
crossref_primary_10_1016_j_istruc_2023_06_049
crossref_primary_10_1088_1361_6501_ad1cc9
crossref_primary_10_1016_j_engstruct_2023_116150
Cites_doi 10.1016/j.engstruct.2008.04.008
10.1061/(ASCE)ST.1943-541X.0002602
10.1016/j.neucom.2005.12.126
10.1002/wics.73
10.1007/s00466-011-0611-8
10.1016/j.engstruct.2008.04.018
10.1080/15732479.2018.1469650
10.1080/17499518.2018.1478106
10.1016/j.engstruct.2006.04.022
10.1007/s11431-016-6017-2
10.1109/IJCNN.2004.1380068
10.1016/S0008-8846(97)00214-7
10.1177/1475921719872939
10.1080/00401706.2000.10485979
10.1016/j.compgeo.2007.03.002
10.1016/j.tust.2013.07.014
10.1016/j.compgeo.2014.11.013
10.1016/j.engstruct.2010.12.011
10.1007/s13349-020-00452-x
10.1016/j.engstruct.2015.01.047
10.1016/j.advengsoft.2019.03.003
10.1007/s12559-014-9255-2
10.1016/j.probengmech.2007.10.003
10.1016/j.swevo.2017.04.008
10.1016/j.advengsoft.2020.102870
10.1016/j.measurement.2020.108161
10.1002/nag.381
10.1016/j.compgeo.2014.08.010
10.1061/(ASCE)CF.1943-5509.0000660
10.1016/S1365-1609(00)00035-6
10.1016/j.wse.2019.09.004
10.1016/j.advengsoft.2019.02.005
10.1016/j.engstruct.2019.05.072
10.1016/j.compstruc.2017.11.008
10.1016/j.compstruc.2009.03.001
10.1016/S0951-8320(03)00058-9
10.1002/nag.614
10.1016/j.compgeo.2016.01.001
10.1016/j.wse.2019.09.002
10.1080/15732470500030513
10.1061/(ASCE)ST.1943-541X.0001100
10.1007/s10704-006-6582-7
10.1016/j.ins.2011.04.024
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2022
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2022.113999
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2022_113999
S014102962200150X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-dfd8aa749f88100284a3ca11fe561cd11d030641f372e1749e05e3f9ed243cab3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770946100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Wed Aug 13 08:11:57 EDT 2025
Sat Nov 29 07:26:32 EST 2025
Tue Nov 18 22:36:42 EST 2025
Sun Apr 06 06:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Jaya optimization algorithm
Inverse/back analysis
Concrete dams
Kernel extreme learning machines
Displacements
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-dfd8aa749f88100284a3ca11fe561cd11d030641f372e1749e05e3f9ed243cab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2649299562
PQPubID 2045481
ParticipantIDs proquest_journals_2649299562
crossref_citationtrail_10_1016_j_engstruct_2022_113999
crossref_primary_10_1016_j_engstruct_2022_113999
elsevier_sciencedirect_doi_10_1016_j_engstruct_2022_113999
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE Int Jt Conf Neural Netw IEEE Cat No04CH37541, vol. 2, Budapest, Hungary: IEEE; 2004, p. 985–90.
Yang, Su, Wen (b0110) 2019; 131
Zhou, Li, Ma, Chang, Ma, Zhang (b0020) 2016; 59
Yu, Zhang, Yuan (b0055) 2007; 34
Kang, Han, Salgado, Li (b0180) 2015; 63
Chen, Gu, Lin, Wang, Hariri-Ardebili (b0130) 2020; 166
Mata (b0150) 2011; 33
Feng, Zhang, Sheng (b0095) 2000; 37
Sharifzadeh, Tarifard, Moridi (b0030) 2013; 38
Kang, Li, Ma (b0220) 2011; 181
Hariri-Ardebili (b0225) 2018; 14
Helton, Davis (b0195) 2003; 81
Lin, Li, Chen, Lin, Liu, Gao (b0035) 2020; 148
Venkata (b0120) 2016
Ardito, Maier, Massalongo (b0040) 2008; 30
Ren, Fang, Deng (b0200) 2011; 137
Guo, Pei, Zhou, Chen, Yao (b0080) 2016; 74
Tatin, Briffaut, Dufour, Simon, Fabre (b0155) 2015; 91
Dou, Li, Kang (b0090) 2019; 12
Liu, Kang, Ma, Li (b0145) 2021; 11
Mckay, Beckman, Conover (b0135) 2000; 42
Yao, Guan, Yang, Chen, Qiu, Ma (b0085) 2019; 12
Fedele, Maier, Miller (b0140) 2005; 1
.
Huang, Zhu, Siew (b0170) 2006; 70
Cheng, Li, Xiao (b0190) 2008; 23
Levasseur, Malécot, Boulon, Flavigny (b0100) 2008; 32
Fedele, Maier, Miller (b0005) 2006; 137
Bao, Li, Lu, Gu (b0065) 2020; 146
Labibzadeh, Khajehdezfuly, Khayat, Arab (b0045) 2015; 29
Response surface methodology; n.d.
De Sortis, Paoliani (b0160) 2007; 29
Kang, Liu, Li (b0125) 2020; 19
Bolzon, Buljak (b0060) 2011; 48
(accessed December 28, 2020).
Sevieri, Andreini, De Falco, Matthies (b0165) 2019; 196
Khuri, Mukhopadhyay (b0075) 2010; 2
Venkata Rao, Saroj (b0205) 2017; 37
Kang, Li, Dai (b0210) 2019; 131
Huang (b0175) 2014; 6
Nguyen-Tuan, Könke, Lahmer (b0050) 2018; 196
Shahidi, Pakzad (b0185) 2014; 140
Arabshahi, Lotfi (b0215) 2008; 30
Hariri-Ardebili, Boodagh (b0235) 2019; 13
Kang, Li, Xu (b0015) 2009; 87
Jia, Chi (b0105) 2015; 65
Feng, Zhao, Li (b0025) 2004; 28
Vilardell, Aguado, Agullo, Gettu (b0010) 1998; 28
Hariri-Ardebili, Seyed-Kolbadi, Noori (b0230) 2018; 2018
Arabshahi (10.1016/j.engstruct.2022.113999_b0215) 2008; 30
Ardito (10.1016/j.engstruct.2022.113999_b0040) 2008; 30
10.1016/j.engstruct.2022.113999_b0070
Bolzon (10.1016/j.engstruct.2022.113999_b0060) 2011; 48
Levasseur (10.1016/j.engstruct.2022.113999_b0100) 2008; 32
Labibzadeh (10.1016/j.engstruct.2022.113999_b0045) 2015; 29
Shahidi (10.1016/j.engstruct.2022.113999_b0185) 2014; 140
Sharifzadeh (10.1016/j.engstruct.2022.113999_b0030) 2013; 38
Kang (10.1016/j.engstruct.2022.113999_b0015) 2009; 87
Khuri (10.1016/j.engstruct.2022.113999_b0075) 2010; 2
Zhou (10.1016/j.engstruct.2022.113999_b0020) 2016; 59
Lin (10.1016/j.engstruct.2022.113999_b0035) 2020; 148
Tatin (10.1016/j.engstruct.2022.113999_b0155) 2015; 91
Kang (10.1016/j.engstruct.2022.113999_b0220) 2011; 181
Dou (10.1016/j.engstruct.2022.113999_b0090) 2019; 12
Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0225) 2018; 14
Mckay (10.1016/j.engstruct.2022.113999_b0135) 2000; 42
Sevieri (10.1016/j.engstruct.2022.113999_b0165) 2019; 196
Cheng (10.1016/j.engstruct.2022.113999_b0190) 2008; 23
Guo (10.1016/j.engstruct.2022.113999_b0080) 2016; 74
Yu (10.1016/j.engstruct.2022.113999_b0055) 2007; 34
Yang (10.1016/j.engstruct.2022.113999_b0110) 2019; 131
Liu (10.1016/j.engstruct.2022.113999_b0145) 2021; 11
Huang (10.1016/j.engstruct.2022.113999_b0175) 2014; 6
Bao (10.1016/j.engstruct.2022.113999_b0065) 2020; 146
Feng (10.1016/j.engstruct.2022.113999_b0025) 2004; 28
Venkata (10.1016/j.engstruct.2022.113999_b0120) 2016
Nguyen-Tuan (10.1016/j.engstruct.2022.113999_b0050) 2018; 196
Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0230) 2018; 2018
Jia (10.1016/j.engstruct.2022.113999_b0105) 2015; 65
Kang (10.1016/j.engstruct.2022.113999_b0210) 2019; 131
De Sortis (10.1016/j.engstruct.2022.113999_b0160) 2007; 29
Fedele (10.1016/j.engstruct.2022.113999_b0140) 2005; 1
Vilardell (10.1016/j.engstruct.2022.113999_b0010) 1998; 28
Venkata Rao (10.1016/j.engstruct.2022.113999_b0205) 2017; 37
Feng (10.1016/j.engstruct.2022.113999_b0095) 2000; 37
10.1016/j.engstruct.2022.113999_b0115
Ren (10.1016/j.engstruct.2022.113999_b0200) 2011; 137
Kang (10.1016/j.engstruct.2022.113999_b0125) 2020; 19
Chen (10.1016/j.engstruct.2022.113999_b0130) 2020; 166
Fedele (10.1016/j.engstruct.2022.113999_b0005) 2006; 137
Helton (10.1016/j.engstruct.2022.113999_b0195) 2003; 81
Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0235) 2019; 13
Mata (10.1016/j.engstruct.2022.113999_b0150) 2011; 33
Huang (10.1016/j.engstruct.2022.113999_b0170) 2006; 70
Kang (10.1016/j.engstruct.2022.113999_b0180) 2015; 63
Yao (10.1016/j.engstruct.2022.113999_b0085) 2019; 12
References_xml – volume: 137
  start-page: 151
  year: 2006
  end-page: 172
  ident: b0005
  article-title: Health assessment of concrete dams by overall inverse analyses and neural networks
  publication-title: Int J Fract
– volume: 146
  start-page: 04020155
  year: 2020
  ident: b0065
  article-title: IDE-MLSSVR-based back analysis method for multiple mechanical parameters of concrete dams
  publication-title: J Struct Eng
– volume: 74
  start-page: 132
  year: 2016
  end-page: 140
  ident: b0080
  article-title: Response surface and genetic method of deformation back analysis for high core rockfill dams
  publication-title: Comput Geotech
– volume: 23
  start-page: 51
  year: 2008
  end-page: 63
  ident: b0190
  article-title: A new artificial neural network-based response surface method for structural reliability analysis
  publication-title: Probabilistic Eng Mech
– volume: 30
  start-page: 3176
  year: 2008
  end-page: 3185
  ident: b0040
  article-title: Diagnostic analysis of concrete dams based on seasonal hydrostatic loading
  publication-title: Eng Struct
– volume: 42
  start-page: 55
  year: 2000
  end-page: 61
  ident: b0135
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 87
  start-page: 861
  year: 2009
  end-page: 870
  ident: b0015
  article-title: Structural inverse analysis by hybrid simplex artificial bee colony algorithms
  publication-title: Comput Struct
– volume: 148
  start-page: 102870
  year: 2020
  ident: b0035
  article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques
  publication-title: Adv Eng Softw
– volume: 137
  start-page: 248
  year: 2011
  end-page: 257
  ident: b0200
  article-title: Response durface–based finite-element-model updating using structural static responses
  publication-title: J Eng Mech
– volume: 196
  start-page: 146
  year: 2018
  end-page: 156
  ident: b0050
  article-title: Damage identification using inverse analysis for 3D coupled thermo-hydro-mechanical problems
  publication-title: Comput Struct
– volume: 1
  start-page: 165
  year: 2005
  end-page: 180
  ident: b0140
  article-title: Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks
  publication-title: Struct Infrastruct Eng
– volume: 81
  start-page: 23
  year: 2003
  end-page: 69
  ident: b0195
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab Eng Syst Saf
– volume: 38
  start-page: 348
  year: 2013
  end-page: 356
  ident: b0030
  article-title: Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method
  publication-title: Tunn Undergr Space Technol
– volume: 196
  start-page: 109231
  year: 2019
  ident: b0165
  article-title: Concrete gravity dams model parameters updating using static measurements
  publication-title: Eng Struct
– volume: 65
  start-page: 87
  year: 2015
  end-page: 96
  ident: b0105
  article-title: Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization
  publication-title: Comput Geotech
– volume: 29
  start-page: 04014167
  year: 2015
  ident: b0045
  article-title: Elastic strength diagnosis of the dez concrete arch dam using thermal inverse analysis
  publication-title: J Perform Constr Facil
– volume: 28
  start-page: 1141
  year: 2004
  end-page: 1165
  ident: b0025
  article-title: A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology
  publication-title: Int J Numer Anal Methods Geomech
– volume: 12
  start-page: 188
  year: 2019
  end-page: 195
  ident: b0090
  article-title: Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model
  publication-title: Water Sci Eng
– volume: 28
  start-page: 93
  year: 1998
  end-page: 101
  ident: b0010
  article-title: Estimation of the modulus of elasticity for dam concrete
  publication-title: Cem Concr Res
– volume: 30
  start-page: 3065
  year: 2008
  end-page: 3073
  ident: b0215
  article-title: Earthquake response of concrete gravity dams including dam–foundation interface nonlinearities
  publication-title: Eng Struct
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: b0175
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn Comput
– volume: 48
  start-page: 675
  year: 2011
  end-page: 687
  ident: b0060
  article-title: An effective computational tool for parametric studies and identification problems in materials mechanics
  publication-title: Comput Mech
– volume: 11
  start-page: 283
  year: 2021
  end-page: 299
  ident: b0145
  article-title: Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect
  publication-title: J Civ Struct Health Monit
– volume: 140
  year: 2014
  ident: b0185
  article-title: Generalized response durface model updating using time domain data
  publication-title: J Struct Eng
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0230
  article-title: Response surface method for material uncertainty quantification of infrastructures
  publication-title: Shock Vib
– volume: 32
  start-page: 189
  year: 2008
  end-page: 213
  ident: b0100
  article-title: Soil parameter identification using a genetic algorithm
  publication-title: Int J Numer Anal Methods Geomech
– volume: 63
  start-page: 13
  year: 2015
  end-page: 25
  ident: b0180
  article-title: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling
  publication-title: Comput Geotech
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0170
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– volume: 131
  start-page: 60
  year: 2019
  end-page: 76
  ident: b0210
  article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms
  publication-title: Adv Eng Softw
– reference: Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE Int Jt Conf Neural Netw IEEE Cat No04CH37541, vol. 2, Budapest, Hungary: IEEE; 2004, p. 985–90.
– volume: 13
  start-page: 34
  year: 2019
  end-page: 52
  ident: b0235
  article-title: Taguchi design-based seismic reliability analysis of geostructures
  publication-title: Georisk Assess Manag Risk Eng Syst Geohazards
– volume: 37
  start-page: 1
  year: 2017
  end-page: 26
  ident: b0205
  article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization
  publication-title: Swarm Evol Comput
– volume: 37
  start-page: 1039
  year: 2000
  end-page: 1054
  ident: b0095
  article-title: Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method
  publication-title: Int J Rock Mech Min Sci
– volume: 91
  start-page: 26
  year: 2015
  end-page: 39
  ident: b0155
  article-title: Thermal displacements of concrete dams: Accounting for water temperature in statistical models
  publication-title: Eng Struct
– volume: 33
  start-page: 903
  year: 2011
  end-page: 910
  ident: b0150
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
– reference: (accessed December 28, 2020).
– volume: 2
  start-page: 128
  year: 2010
  end-page: 149
  ident: b0075
  article-title: Response surface methodology
  publication-title: Wiley Interdiscip Rev Comput Stat
– volume: 131
  start-page: 205
  year: 2019
  end-page: 216
  ident: b0110
  article-title: Improved PLS and PSO methods-based back analysis for elastic modulus of dam
  publication-title: Adv Eng Softw
– volume: 181
  start-page: 3508
  year: 2011
  end-page: 3531
  ident: b0220
  article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Inf Sci
– volume: 14
  start-page: 1641
  year: 2018
  end-page: 1663
  ident: b0225
  article-title: MCS-based response surface metamodels and optimal design of experiments for gravity dams
  publication-title: Struct Infrastruct Eng
– volume: 166
  start-page: 108161
  year: 2020
  ident: b0130
  article-title: Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine
  publication-title: Measurement
– start-page: 19
  year: 2016
  end-page: 34
  ident: b0120
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 59
  start-page: 783
  year: 2016
  end-page: 794
  ident: b0020
  article-title: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm
  publication-title: Sci China Technol Sci
– reference: .
– volume: 29
  start-page: 110
  year: 2007
  end-page: 120
  ident: b0160
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng Struct
– reference: Response surface methodology; n.d.
– volume: 34
  start-page: 423
  year: 2007
  end-page: 434
  ident: b0055
  article-title: An intelligent displacement back-analysis method for earth-rockfill dams
  publication-title: Comput Geotech
– volume: 12
  start-page: 196
  year: 2019
  end-page: 204
  ident: b0085
  article-title: Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm
  publication-title: Water Sci Eng
– volume: 19
  start-page: 987
  year: 2020
  end-page: 1002
  ident: b0125
  article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines
  publication-title: Struct Health Monit
– start-page: 19
  year: 2016
  ident: 10.1016/j.engstruct.2022.113999_b0120
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 30
  start-page: 3176
  issue: 11
  year: 2008
  ident: 10.1016/j.engstruct.2022.113999_b0040
  article-title: Diagnostic analysis of concrete dams based on seasonal hydrostatic loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.04.008
– volume: 146
  start-page: 04020155
  issue: 8
  year: 2020
  ident: 10.1016/j.engstruct.2022.113999_b0065
  article-title: IDE-MLSSVR-based back analysis method for multiple mechanical parameters of concrete dams
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002602
– volume: 137
  start-page: 248
  year: 2011
  ident: 10.1016/j.engstruct.2022.113999_b0200
  article-title: Response durface–based finite-element-model updating using structural static responses
  publication-title: J Eng Mech
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: 10.1016/j.engstruct.2022.113999_b0170
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 2
  start-page: 128
  issue: 2
  year: 2010
  ident: 10.1016/j.engstruct.2022.113999_b0075
  article-title: Response surface methodology
  publication-title: Wiley Interdiscip Rev Comput Stat
  doi: 10.1002/wics.73
– volume: 48
  start-page: 675
  issue: 6
  year: 2011
  ident: 10.1016/j.engstruct.2022.113999_b0060
  article-title: An effective computational tool for parametric studies and identification problems in materials mechanics
  publication-title: Comput Mech
  doi: 10.1007/s00466-011-0611-8
– volume: 30
  start-page: 3065
  issue: 11
  year: 2008
  ident: 10.1016/j.engstruct.2022.113999_b0215
  article-title: Earthquake response of concrete gravity dams including dam–foundation interface nonlinearities
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.04.018
– volume: 14
  start-page: 1641
  issue: 12
  year: 2018
  ident: 10.1016/j.engstruct.2022.113999_b0225
  article-title: MCS-based response surface metamodels and optimal design of experiments for gravity dams
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2018.1469650
– volume: 13
  start-page: 34
  issue: 1
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0235
  article-title: Taguchi design-based seismic reliability analysis of geostructures
  publication-title: Georisk Assess Manag Risk Eng Syst Geohazards
  doi: 10.1080/17499518.2018.1478106
– volume: 29
  start-page: 110
  issue: 1
  year: 2007
  ident: 10.1016/j.engstruct.2022.113999_b0160
  article-title: Statistical analysis and structural identification in concrete dam monitoring
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2006.04.022
– volume: 59
  start-page: 783
  issue: 5
  year: 2016
  ident: 10.1016/j.engstruct.2022.113999_b0020
  article-title: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-016-6017-2
– ident: 10.1016/j.engstruct.2022.113999_b0115
  doi: 10.1109/IJCNN.2004.1380068
– volume: 28
  start-page: 93
  issue: 1
  year: 1998
  ident: 10.1016/j.engstruct.2022.113999_b0010
  article-title: Estimation of the modulus of elasticity for dam concrete
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(97)00214-7
– volume: 19
  start-page: 987
  issue: 4
  year: 2020
  ident: 10.1016/j.engstruct.2022.113999_b0125
  article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines
  publication-title: Struct Health Monit
  doi: 10.1177/1475921719872939
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  ident: 10.1016/j.engstruct.2022.113999_b0135
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 34
  start-page: 423
  issue: 6
  year: 2007
  ident: 10.1016/j.engstruct.2022.113999_b0055
  article-title: An intelligent displacement back-analysis method for earth-rockfill dams
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.03.002
– volume: 38
  start-page: 348
  year: 2013
  ident: 10.1016/j.engstruct.2022.113999_b0030
  article-title: Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.07.014
– volume: 65
  start-page: 87
  year: 2015
  ident: 10.1016/j.engstruct.2022.113999_b0105
  article-title: Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.11.013
– volume: 33
  start-page: 903
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2022.113999_b0150
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.12.011
– volume: 11
  start-page: 283
  issue: 2
  year: 2021
  ident: 10.1016/j.engstruct.2022.113999_b0145
  article-title: Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-020-00452-x
– volume: 91
  start-page: 26
  year: 2015
  ident: 10.1016/j.engstruct.2022.113999_b0155
  article-title: Thermal displacements of concrete dams: Accounting for water temperature in statistical models
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.01.047
– volume: 131
  start-page: 60
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0210
  article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2019.03.003
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.engstruct.2022.113999_b0175
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cogn Comput
  doi: 10.1007/s12559-014-9255-2
– volume: 23
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.engstruct.2022.113999_b0190
  article-title: A new artificial neural network-based response surface method for structural reliability analysis
  publication-title: Probabilistic Eng Mech
  doi: 10.1016/j.probengmech.2007.10.003
– volume: 37
  start-page: 1
  year: 2017
  ident: 10.1016/j.engstruct.2022.113999_b0205
  article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.04.008
– volume: 148
  start-page: 102870
  year: 2020
  ident: 10.1016/j.engstruct.2022.113999_b0035
  article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102870
– volume: 166
  start-page: 108161
  year: 2020
  ident: 10.1016/j.engstruct.2022.113999_b0130
  article-title: Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108161
– volume: 28
  start-page: 1141
  issue: 11
  year: 2004
  ident: 10.1016/j.engstruct.2022.113999_b0025
  article-title: A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.381
– volume: 63
  start-page: 13
  year: 2015
  ident: 10.1016/j.engstruct.2022.113999_b0180
  article-title: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.08.010
– volume: 29
  start-page: 04014167
  issue: 6
  year: 2015
  ident: 10.1016/j.engstruct.2022.113999_b0045
  article-title: Elastic strength diagnosis of the dez concrete arch dam using thermal inverse analysis
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000660
– ident: 10.1016/j.engstruct.2022.113999_b0070
– volume: 37
  start-page: 1039
  issue: 7
  year: 2000
  ident: 10.1016/j.engstruct.2022.113999_b0095
  article-title: Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(00)00035-6
– volume: 12
  start-page: 196
  issue: 3
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0085
  article-title: Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm
  publication-title: Water Sci Eng
  doi: 10.1016/j.wse.2019.09.004
– volume: 131
  start-page: 205
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0110
  article-title: Improved PLS and PSO methods-based back analysis for elastic modulus of dam
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2019.02.005
– volume: 196
  start-page: 109231
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0165
  article-title: Concrete gravity dams model parameters updating using static measurements
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.05.072
– volume: 196
  start-page: 146
  year: 2018
  ident: 10.1016/j.engstruct.2022.113999_b0050
  article-title: Damage identification using inverse analysis for 3D coupled thermo-hydro-mechanical problems
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.11.008
– volume: 87
  start-page: 861
  issue: 13-14
  year: 2009
  ident: 10.1016/j.engstruct.2022.113999_b0015
  article-title: Structural inverse analysis by hybrid simplex artificial bee colony algorithms
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2009.03.001
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.engstruct.2022.113999_b0195
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(03)00058-9
– volume: 32
  start-page: 189
  issue: 2
  year: 2008
  ident: 10.1016/j.engstruct.2022.113999_b0100
  article-title: Soil parameter identification using a genetic algorithm
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.614
– volume: 74
  start-page: 132
  year: 2016
  ident: 10.1016/j.engstruct.2022.113999_b0080
  article-title: Response surface and genetic method of deformation back analysis for high core rockfill dams
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.01.001
– volume: 12
  start-page: 188
  issue: 3
  year: 2019
  ident: 10.1016/j.engstruct.2022.113999_b0090
  article-title: Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model
  publication-title: Water Sci Eng
  doi: 10.1016/j.wse.2019.09.002
– volume: 1
  start-page: 165
  issue: 3
  year: 2005
  ident: 10.1016/j.engstruct.2022.113999_b0140
  article-title: Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732470500030513
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.engstruct.2022.113999_b0230
  article-title: Response surface method for material uncertainty quantification of infrastructures
  publication-title: Shock Vib
– volume: 140
  year: 2014
  ident: 10.1016/j.engstruct.2022.113999_b0185
  article-title: Generalized response durface model updating using time domain data
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001100
– volume: 137
  start-page: 151
  issue: 1-4
  year: 2006
  ident: 10.1016/j.engstruct.2022.113999_b0005
  article-title: Health assessment of concrete dams by overall inverse analyses and neural networks
  publication-title: Int J Fract
  doi: 10.1007/s10704-006-6582-7
– volume: 181
  start-page: 3508
  issue: 16
  year: 2011
  ident: 10.1016/j.engstruct.2022.113999_b0220
  article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.04.024
SSID ssj0002880
Score 2.5433187
Snippet •A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model...
Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113999
SubjectTerms Algorithms
Artificial neural networks
Comparative studies
Computation
Concrete dams
Cost analysis
Dams
Displacements
Economic analysis
Finite element method
Gravity dams
Hypercubes
Inverse/back analysis
Jaya optimization algorithm
Kernel extreme learning machines
Kernels
Latin hypercube sampling
Machine learning
Mathematical models
Objective function
Optimization
Parameter identification
Response surface methodology
Sampling
Sampling methods
Title Multi-parameter inverse analysis of concrete dams using kernel extreme learning machines-based response surface model
URI https://dx.doi.org/10.1016/j.engstruct.2022.113999
https://www.proquest.com/docview/2649299562
Volume 256
WOSCitedRecordID wos000770946100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEM7FH0iadOCQzdBhiXRFtktKBKkDwQdUsAbIYmkIdehA9sK8hv6q3t8SZbbws3QRRAOIkXpPh3vTvdA6H3GwDIWeQFf2ojEpCAyLksyiakSQsmSUVXZOrNf88tLOp2yb4PBz5ALc7vItaZ3d-zmv7IaaMBskzp7D3a3kwIBzoHpcAS2w_GfGG9TamNT0vvahLpEtTaRF-YvQVd-BIxg0BY3MhKmIENj_QU_5ErLRQTC2rgMQzuJWXRtwy3lOjYbnsl1sUG1Mlo3K1WAVLC9dHoO_q7EYeTK0zarLlLxi3dQn8u6DQaqG0OZbhFcwoie17JPu1jq2bzR274KMHO7EJfgvkziUep62Ab5m463JWgCKqlrmfSbcHd-hvlQ6plb_dDcY9iN6JfT3tnm2uDDENc25-1E3EzE3UQP0GGajxlIyMPTT2fTz-2-nlLbh699hl604B_X9DddZ2fXt6rM1VP0xNsg-NRh5xkaSP0cPd5i2wvU7KAIexThgCK8VDigCBsUYYsi7FCEPYpwQBHuowgHFGGPImxR9BJ9Pz-7-ngR-w4dcZWRbBMLJWhR5IQpSk0tX0qKrCqSRElQyyuRJMKYpCRRWZ5KsH2ZHI1lppgUKYELy-wVOtBLLY8QruDtlqQkmVCMEPP7uxrnkk1EWeQ5VewYTcK75JUvX2-6qCz4Hn4eo1E78MZVcNk_5ENgFveKqFMwOUBx_-CTwF7uxcKag9kBdggDY-P1_ZfzBj3qPqYTdAAXyLfoYXW7qderdx6mvwC8ib97
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+inverse+analysis+of+concrete+dams+using+kernel+extreme+learning+machines-based+response+surface+model&rft.jtitle=Engineering+structures&rft.au=Kang%2C+Fei&rft.au=Liu%2C+Xi&rft.au=Li%2C+Junjie&rft.au=Li%2C+Hongjun&rft.date=2022-04-01&rft.issn=0141-0296&rft.volume=256&rft.spage=113999&rft_id=info:doi/10.1016%2Fj.engstruct.2022.113999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2022_113999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon