Multi-parameter inverse analysis of concrete dams using kernel extreme learning machines-based response surface model
•A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter...
Saved in:
| Published in: | Engineering structures Vol. 256; p. 113999 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.04.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0141-0296, 1873-7323 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter identification.•Two cases and two real-world concrete dams are utilized to verify the engineering applicability of the proposed approach.•The proposed model combined with the Jaya algorithm shows the most promising results.
Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost. |
|---|---|
| AbstractList | Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost. •A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model are generated by Latin hypercube sampling.•The optimization algorithms are utilized to minimize the objective function for material parameter identification.•Two cases and two real-world concrete dams are utilized to verify the engineering applicability of the proposed approach.•The proposed model combined with the Jaya algorithm shows the most promising results. Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams. FEM-based inverse analysis method is economical and effective, but with some limitations such as complex computation and time-consuming. This paper presents a kernel extreme learning machine (KELM)-based response surface model (RSM) for parameter inverse analysis of concrete dams. The FEM is replaced by KELM-based RSM to explore the relationships between material parameters and displacement response of dam-foundation systems. Sample data of KELM-based RSM are generated by the efficient sampling technique Latin hypercube sampling. Subsequently, a novel optimization algorithm Jaya is adopted to minimize the objective function for material parameters identification. The effectiveness and practicability of the proposed approach are verified by two cases and two real concrete gravity dams in operation with sufficient monitoring data. Comparative studies with direct finite element method and several optimization algorithms were also performed to demonstrate the superiority of the proposed approach over commonly used techniques. Results show that the proposed KELM-based RSM is a simple and efficient way to achieve high accuracy in parameter inverse analysis of concrete dams at a low computation cost. |
| ArticleNumber | 113999 |
| Author | Li, Junjie Li, Hongjun Kang, Fei Liu, Xi |
| Author_xml | – sequence: 1 givenname: Fei surname: Kang fullname: Kang, Fei email: kangfei@dlut.edu.cn, kangfei2009@163.com organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China – sequence: 2 givenname: Xi surname: Liu fullname: Liu, Xi email: liuxidlut@163.com organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China – sequence: 3 givenname: Junjie surname: Li fullname: Li, Junjie email: lijunjie@dlut.edu.cn organization: School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China – sequence: 4 givenname: Hongjun surname: Li fullname: Li, Hongjun email: lihj@iwhr.com organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China |
| BookMark | eNqNkMtuFDEQRS0UpEwSviGWWPfgR093e8EiinhJQWxgbTl2OXjotocqd0T-Ph4NYsEGVpbK515VnQt2lksGxq6l2Eohhzf7LeQHqrj6ulVCqa2U2hjzgm3kNOpu1EqfsY2QveyEMsM5uyDaCyHUNIkNWz-vc03dwaFboALylB8BCbjLbn6iRLxE7kv22H55cAvxlVJ-4D8AM8wcflWEBfgMDvNxvjj_PWWg7t4RBI5Ah5JbH60YnQe-lADzFXsZ3Uzw6vd7yb69f_f19mN39-XDp9ubu87rXtcuxDA5N_YmTpM8btw77Z2UEXaD9EHKILQYehn1qEA2DsQOdDQQVN_Ae33JXp96D1h-rkDV7suK7TKyauiNMmY3qEa9PVEeCxFCtD5VV1PJFV2arRT2aNru7R_T9mjanky3_PhX_oBpcfj0H8mbUxKahMcEaMknyB5CQmhsKOmfHc8kXaMV |
| CitedBy_id | crossref_primary_10_1177_14759217221117478 crossref_primary_10_1016_j_engstruct_2025_119794 crossref_primary_10_3390_app13095407 crossref_primary_10_1007_s10706_025_03341_6 crossref_primary_10_1016_j_undsp_2025_03_001 crossref_primary_10_1016_j_engstruct_2022_114687 crossref_primary_10_1016_j_aei_2023_102016 crossref_primary_10_1016_j_aei_2025_103559 crossref_primary_10_1016_j_aei_2023_101881 crossref_primary_10_1016_j_ndteint_2024_103271 crossref_primary_10_3390_app12104991 crossref_primary_10_1016_j_istruc_2023_02_076 crossref_primary_10_1016_j_engstruct_2022_115353 crossref_primary_10_3390_w16010119 crossref_primary_10_1016_j_apt_2022_103898 crossref_primary_10_3390_w14193051 crossref_primary_10_1016_j_compgeo_2023_105814 crossref_primary_10_1002_nag_3812 crossref_primary_10_1016_j_compgeo_2023_105555 crossref_primary_10_1007_s00603_025_04401_2 crossref_primary_10_1016_j_tust_2025_106416 crossref_primary_10_3390_math12071066 crossref_primary_10_1007_s10853_025_10913_7 crossref_primary_10_1007_s00466_023_02320_z crossref_primary_10_1016_j_istruc_2025_108285 crossref_primary_10_3390_su151310356 crossref_primary_10_1002_qre_3486 crossref_primary_10_1016_j_engstruct_2025_119884 crossref_primary_10_1007_s13349_023_00704_6 crossref_primary_10_1016_j_aei_2022_101855 crossref_primary_10_1177_14759217251341527 crossref_primary_10_1016_j_aei_2024_102922 crossref_primary_10_1016_j_istruc_2024_107605 crossref_primary_10_1016_j_aei_2022_101853 crossref_primary_10_1016_j_aei_2025_103306 crossref_primary_10_1016_j_compstruc_2023_107018 crossref_primary_10_1016_j_compgeo_2024_106597 crossref_primary_10_3390_w16202979 crossref_primary_10_1007_s13369_023_08553_7 crossref_primary_10_1016_j_icheatmasstransfer_2025_109502 crossref_primary_10_3390_su151310627 crossref_primary_10_1016_j_aei_2023_102060 crossref_primary_10_1016_j_mtcomm_2025_111501 crossref_primary_10_1016_j_istruc_2023_06_049 crossref_primary_10_1088_1361_6501_ad1cc9 crossref_primary_10_1016_j_engstruct_2023_116150 |
| Cites_doi | 10.1016/j.engstruct.2008.04.008 10.1061/(ASCE)ST.1943-541X.0002602 10.1016/j.neucom.2005.12.126 10.1002/wics.73 10.1007/s00466-011-0611-8 10.1016/j.engstruct.2008.04.018 10.1080/15732479.2018.1469650 10.1080/17499518.2018.1478106 10.1016/j.engstruct.2006.04.022 10.1007/s11431-016-6017-2 10.1109/IJCNN.2004.1380068 10.1016/S0008-8846(97)00214-7 10.1177/1475921719872939 10.1080/00401706.2000.10485979 10.1016/j.compgeo.2007.03.002 10.1016/j.tust.2013.07.014 10.1016/j.compgeo.2014.11.013 10.1016/j.engstruct.2010.12.011 10.1007/s13349-020-00452-x 10.1016/j.engstruct.2015.01.047 10.1016/j.advengsoft.2019.03.003 10.1007/s12559-014-9255-2 10.1016/j.probengmech.2007.10.003 10.1016/j.swevo.2017.04.008 10.1016/j.advengsoft.2020.102870 10.1016/j.measurement.2020.108161 10.1002/nag.381 10.1016/j.compgeo.2014.08.010 10.1061/(ASCE)CF.1943-5509.0000660 10.1016/S1365-1609(00)00035-6 10.1016/j.wse.2019.09.004 10.1016/j.advengsoft.2019.02.005 10.1016/j.engstruct.2019.05.072 10.1016/j.compstruc.2017.11.008 10.1016/j.compstruc.2009.03.001 10.1016/S0951-8320(03)00058-9 10.1002/nag.614 10.1016/j.compgeo.2016.01.001 10.1016/j.wse.2019.09.002 10.1080/15732470500030513 10.1061/(ASCE)ST.1943-541X.0001100 10.1007/s10704-006-6582-7 10.1016/j.ins.2011.04.024 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Apr 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2022 |
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
| DOI | 10.1016/j.engstruct.2022.113999 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7323 |
| ExternalDocumentID | 10_1016_j_engstruct_2022_113999 S014102962200150X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K FR3 JG9 KR7 SOI |
| ID | FETCH-LOGICAL-c343t-dfd8aa749f88100284a3ca11fe561cd11d030641f372e1749e05e3f9ed243cab3 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770946100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-0296 |
| IngestDate | Wed Aug 13 08:11:57 EDT 2025 Sat Nov 29 07:26:32 EST 2025 Tue Nov 18 22:36:42 EST 2025 Sun Apr 06 06:54:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Jaya optimization algorithm Inverse/back analysis Concrete dams Kernel extreme learning machines Displacements |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-dfd8aa749f88100284a3ca11fe561cd11d030641f372e1749e05e3f9ed243cab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2649299562 |
| PQPubID | 2045481 |
| ParticipantIDs | proquest_journals_2649299562 crossref_citationtrail_10_1016_j_engstruct_2022_113999 crossref_primary_10_1016_j_engstruct_2022_113999 elsevier_sciencedirect_doi_10_1016_j_engstruct_2022_113999 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Engineering structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE Int Jt Conf Neural Netw IEEE Cat No04CH37541, vol. 2, Budapest, Hungary: IEEE; 2004, p. 985–90. Yang, Su, Wen (b0110) 2019; 131 Zhou, Li, Ma, Chang, Ma, Zhang (b0020) 2016; 59 Yu, Zhang, Yuan (b0055) 2007; 34 Kang, Han, Salgado, Li (b0180) 2015; 63 Chen, Gu, Lin, Wang, Hariri-Ardebili (b0130) 2020; 166 Mata (b0150) 2011; 33 Feng, Zhang, Sheng (b0095) 2000; 37 Sharifzadeh, Tarifard, Moridi (b0030) 2013; 38 Kang, Li, Ma (b0220) 2011; 181 Hariri-Ardebili (b0225) 2018; 14 Helton, Davis (b0195) 2003; 81 Lin, Li, Chen, Lin, Liu, Gao (b0035) 2020; 148 Venkata (b0120) 2016 Ardito, Maier, Massalongo (b0040) 2008; 30 Ren, Fang, Deng (b0200) 2011; 137 Guo, Pei, Zhou, Chen, Yao (b0080) 2016; 74 Tatin, Briffaut, Dufour, Simon, Fabre (b0155) 2015; 91 Dou, Li, Kang (b0090) 2019; 12 Liu, Kang, Ma, Li (b0145) 2021; 11 Mckay, Beckman, Conover (b0135) 2000; 42 Yao, Guan, Yang, Chen, Qiu, Ma (b0085) 2019; 12 Fedele, Maier, Miller (b0140) 2005; 1 . Huang, Zhu, Siew (b0170) 2006; 70 Cheng, Li, Xiao (b0190) 2008; 23 Levasseur, Malécot, Boulon, Flavigny (b0100) 2008; 32 Fedele, Maier, Miller (b0005) 2006; 137 Bao, Li, Lu, Gu (b0065) 2020; 146 Labibzadeh, Khajehdezfuly, Khayat, Arab (b0045) 2015; 29 Response surface methodology; n.d. De Sortis, Paoliani (b0160) 2007; 29 Kang, Liu, Li (b0125) 2020; 19 Bolzon, Buljak (b0060) 2011; 48 (accessed December 28, 2020). Sevieri, Andreini, De Falco, Matthies (b0165) 2019; 196 Khuri, Mukhopadhyay (b0075) 2010; 2 Venkata Rao, Saroj (b0205) 2017; 37 Kang, Li, Dai (b0210) 2019; 131 Huang (b0175) 2014; 6 Nguyen-Tuan, Könke, Lahmer (b0050) 2018; 196 Shahidi, Pakzad (b0185) 2014; 140 Arabshahi, Lotfi (b0215) 2008; 30 Hariri-Ardebili, Boodagh (b0235) 2019; 13 Kang, Li, Xu (b0015) 2009; 87 Jia, Chi (b0105) 2015; 65 Feng, Zhao, Li (b0025) 2004; 28 Vilardell, Aguado, Agullo, Gettu (b0010) 1998; 28 Hariri-Ardebili, Seyed-Kolbadi, Noori (b0230) 2018; 2018 Arabshahi (10.1016/j.engstruct.2022.113999_b0215) 2008; 30 Ardito (10.1016/j.engstruct.2022.113999_b0040) 2008; 30 10.1016/j.engstruct.2022.113999_b0070 Bolzon (10.1016/j.engstruct.2022.113999_b0060) 2011; 48 Levasseur (10.1016/j.engstruct.2022.113999_b0100) 2008; 32 Labibzadeh (10.1016/j.engstruct.2022.113999_b0045) 2015; 29 Shahidi (10.1016/j.engstruct.2022.113999_b0185) 2014; 140 Sharifzadeh (10.1016/j.engstruct.2022.113999_b0030) 2013; 38 Kang (10.1016/j.engstruct.2022.113999_b0015) 2009; 87 Khuri (10.1016/j.engstruct.2022.113999_b0075) 2010; 2 Zhou (10.1016/j.engstruct.2022.113999_b0020) 2016; 59 Lin (10.1016/j.engstruct.2022.113999_b0035) 2020; 148 Tatin (10.1016/j.engstruct.2022.113999_b0155) 2015; 91 Kang (10.1016/j.engstruct.2022.113999_b0220) 2011; 181 Dou (10.1016/j.engstruct.2022.113999_b0090) 2019; 12 Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0225) 2018; 14 Mckay (10.1016/j.engstruct.2022.113999_b0135) 2000; 42 Sevieri (10.1016/j.engstruct.2022.113999_b0165) 2019; 196 Cheng (10.1016/j.engstruct.2022.113999_b0190) 2008; 23 Guo (10.1016/j.engstruct.2022.113999_b0080) 2016; 74 Yu (10.1016/j.engstruct.2022.113999_b0055) 2007; 34 Yang (10.1016/j.engstruct.2022.113999_b0110) 2019; 131 Liu (10.1016/j.engstruct.2022.113999_b0145) 2021; 11 Huang (10.1016/j.engstruct.2022.113999_b0175) 2014; 6 Bao (10.1016/j.engstruct.2022.113999_b0065) 2020; 146 Feng (10.1016/j.engstruct.2022.113999_b0025) 2004; 28 Venkata (10.1016/j.engstruct.2022.113999_b0120) 2016 Nguyen-Tuan (10.1016/j.engstruct.2022.113999_b0050) 2018; 196 Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0230) 2018; 2018 Jia (10.1016/j.engstruct.2022.113999_b0105) 2015; 65 Kang (10.1016/j.engstruct.2022.113999_b0210) 2019; 131 De Sortis (10.1016/j.engstruct.2022.113999_b0160) 2007; 29 Fedele (10.1016/j.engstruct.2022.113999_b0140) 2005; 1 Vilardell (10.1016/j.engstruct.2022.113999_b0010) 1998; 28 Venkata Rao (10.1016/j.engstruct.2022.113999_b0205) 2017; 37 Feng (10.1016/j.engstruct.2022.113999_b0095) 2000; 37 10.1016/j.engstruct.2022.113999_b0115 Ren (10.1016/j.engstruct.2022.113999_b0200) 2011; 137 Kang (10.1016/j.engstruct.2022.113999_b0125) 2020; 19 Chen (10.1016/j.engstruct.2022.113999_b0130) 2020; 166 Fedele (10.1016/j.engstruct.2022.113999_b0005) 2006; 137 Helton (10.1016/j.engstruct.2022.113999_b0195) 2003; 81 Hariri-Ardebili (10.1016/j.engstruct.2022.113999_b0235) 2019; 13 Mata (10.1016/j.engstruct.2022.113999_b0150) 2011; 33 Huang (10.1016/j.engstruct.2022.113999_b0170) 2006; 70 Kang (10.1016/j.engstruct.2022.113999_b0180) 2015; 63 Yao (10.1016/j.engstruct.2022.113999_b0085) 2019; 12 |
| References_xml | – volume: 137 start-page: 151 year: 2006 end-page: 172 ident: b0005 article-title: Health assessment of concrete dams by overall inverse analyses and neural networks publication-title: Int J Fract – volume: 146 start-page: 04020155 year: 2020 ident: b0065 article-title: IDE-MLSSVR-based back analysis method for multiple mechanical parameters of concrete dams publication-title: J Struct Eng – volume: 74 start-page: 132 year: 2016 end-page: 140 ident: b0080 article-title: Response surface and genetic method of deformation back analysis for high core rockfill dams publication-title: Comput Geotech – volume: 23 start-page: 51 year: 2008 end-page: 63 ident: b0190 article-title: A new artificial neural network-based response surface method for structural reliability analysis publication-title: Probabilistic Eng Mech – volume: 30 start-page: 3176 year: 2008 end-page: 3185 ident: b0040 article-title: Diagnostic analysis of concrete dams based on seasonal hydrostatic loading publication-title: Eng Struct – volume: 42 start-page: 55 year: 2000 end-page: 61 ident: b0135 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 87 start-page: 861 year: 2009 end-page: 870 ident: b0015 article-title: Structural inverse analysis by hybrid simplex artificial bee colony algorithms publication-title: Comput Struct – volume: 148 start-page: 102870 year: 2020 ident: b0035 article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques publication-title: Adv Eng Softw – volume: 137 start-page: 248 year: 2011 end-page: 257 ident: b0200 article-title: Response durface–based finite-element-model updating using structural static responses publication-title: J Eng Mech – volume: 196 start-page: 146 year: 2018 end-page: 156 ident: b0050 article-title: Damage identification using inverse analysis for 3D coupled thermo-hydro-mechanical problems publication-title: Comput Struct – volume: 1 start-page: 165 year: 2005 end-page: 180 ident: b0140 article-title: Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks publication-title: Struct Infrastruct Eng – volume: 81 start-page: 23 year: 2003 end-page: 69 ident: b0195 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab Eng Syst Saf – volume: 38 start-page: 348 year: 2013 end-page: 356 ident: b0030 article-title: Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method publication-title: Tunn Undergr Space Technol – volume: 196 start-page: 109231 year: 2019 ident: b0165 article-title: Concrete gravity dams model parameters updating using static measurements publication-title: Eng Struct – volume: 65 start-page: 87 year: 2015 end-page: 96 ident: b0105 article-title: Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization publication-title: Comput Geotech – volume: 29 start-page: 04014167 year: 2015 ident: b0045 article-title: Elastic strength diagnosis of the dez concrete arch dam using thermal inverse analysis publication-title: J Perform Constr Facil – volume: 28 start-page: 1141 year: 2004 end-page: 1165 ident: b0025 article-title: A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology publication-title: Int J Numer Anal Methods Geomech – volume: 12 start-page: 188 year: 2019 end-page: 195 ident: b0090 article-title: Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model publication-title: Water Sci Eng – volume: 28 start-page: 93 year: 1998 end-page: 101 ident: b0010 article-title: Estimation of the modulus of elasticity for dam concrete publication-title: Cem Concr Res – volume: 30 start-page: 3065 year: 2008 end-page: 3073 ident: b0215 article-title: Earthquake response of concrete gravity dams including dam–foundation interface nonlinearities publication-title: Eng Struct – volume: 6 start-page: 376 year: 2014 end-page: 390 ident: b0175 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cogn Comput – volume: 48 start-page: 675 year: 2011 end-page: 687 ident: b0060 article-title: An effective computational tool for parametric studies and identification problems in materials mechanics publication-title: Comput Mech – volume: 11 start-page: 283 year: 2021 end-page: 299 ident: b0145 article-title: Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect publication-title: J Civ Struct Health Monit – volume: 140 year: 2014 ident: b0185 article-title: Generalized response durface model updating using time domain data publication-title: J Struct Eng – volume: 2018 start-page: 1 year: 2018 end-page: 14 ident: b0230 article-title: Response surface method for material uncertainty quantification of infrastructures publication-title: Shock Vib – volume: 32 start-page: 189 year: 2008 end-page: 213 ident: b0100 article-title: Soil parameter identification using a genetic algorithm publication-title: Int J Numer Anal Methods Geomech – volume: 63 start-page: 13 year: 2015 end-page: 25 ident: b0180 article-title: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling publication-title: Comput Geotech – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0170 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing – volume: 131 start-page: 60 year: 2019 end-page: 76 ident: b0210 article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms publication-title: Adv Eng Softw – reference: Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE Int Jt Conf Neural Netw IEEE Cat No04CH37541, vol. 2, Budapest, Hungary: IEEE; 2004, p. 985–90. – volume: 13 start-page: 34 year: 2019 end-page: 52 ident: b0235 article-title: Taguchi design-based seismic reliability analysis of geostructures publication-title: Georisk Assess Manag Risk Eng Syst Geohazards – volume: 37 start-page: 1 year: 2017 end-page: 26 ident: b0205 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm Evol Comput – volume: 37 start-page: 1039 year: 2000 end-page: 1054 ident: b0095 article-title: Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method publication-title: Int J Rock Mech Min Sci – volume: 91 start-page: 26 year: 2015 end-page: 39 ident: b0155 article-title: Thermal displacements of concrete dams: Accounting for water temperature in statistical models publication-title: Eng Struct – volume: 33 start-page: 903 year: 2011 end-page: 910 ident: b0150 article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models publication-title: Eng Struct – reference: (accessed December 28, 2020). – volume: 2 start-page: 128 year: 2010 end-page: 149 ident: b0075 article-title: Response surface methodology publication-title: Wiley Interdiscip Rev Comput Stat – volume: 131 start-page: 205 year: 2019 end-page: 216 ident: b0110 article-title: Improved PLS and PSO methods-based back analysis for elastic modulus of dam publication-title: Adv Eng Softw – volume: 181 start-page: 3508 year: 2011 end-page: 3531 ident: b0220 article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions publication-title: Inf Sci – volume: 14 start-page: 1641 year: 2018 end-page: 1663 ident: b0225 article-title: MCS-based response surface metamodels and optimal design of experiments for gravity dams publication-title: Struct Infrastruct Eng – volume: 166 start-page: 108161 year: 2020 ident: b0130 article-title: Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine publication-title: Measurement – start-page: 19 year: 2016 end-page: 34 ident: b0120 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 59 start-page: 783 year: 2016 end-page: 794 ident: b0020 article-title: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm publication-title: Sci China Technol Sci – reference: . – volume: 29 start-page: 110 year: 2007 end-page: 120 ident: b0160 article-title: Statistical analysis and structural identification in concrete dam monitoring publication-title: Eng Struct – reference: Response surface methodology; n.d. – volume: 34 start-page: 423 year: 2007 end-page: 434 ident: b0055 article-title: An intelligent displacement back-analysis method for earth-rockfill dams publication-title: Comput Geotech – volume: 12 start-page: 196 year: 2019 end-page: 204 ident: b0085 article-title: Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm publication-title: Water Sci Eng – volume: 19 start-page: 987 year: 2020 end-page: 1002 ident: b0125 article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines publication-title: Struct Health Monit – start-page: 19 year: 2016 ident: 10.1016/j.engstruct.2022.113999_b0120 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – volume: 30 start-page: 3176 issue: 11 year: 2008 ident: 10.1016/j.engstruct.2022.113999_b0040 article-title: Diagnostic analysis of concrete dams based on seasonal hydrostatic loading publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.04.008 – volume: 146 start-page: 04020155 issue: 8 year: 2020 ident: 10.1016/j.engstruct.2022.113999_b0065 article-title: IDE-MLSSVR-based back analysis method for multiple mechanical parameters of concrete dams publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002602 – volume: 137 start-page: 248 year: 2011 ident: 10.1016/j.engstruct.2022.113999_b0200 article-title: Response durface–based finite-element-model updating using structural static responses publication-title: J Eng Mech – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: 10.1016/j.engstruct.2022.113999_b0170 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 2 start-page: 128 issue: 2 year: 2010 ident: 10.1016/j.engstruct.2022.113999_b0075 article-title: Response surface methodology publication-title: Wiley Interdiscip Rev Comput Stat doi: 10.1002/wics.73 – volume: 48 start-page: 675 issue: 6 year: 2011 ident: 10.1016/j.engstruct.2022.113999_b0060 article-title: An effective computational tool for parametric studies and identification problems in materials mechanics publication-title: Comput Mech doi: 10.1007/s00466-011-0611-8 – volume: 30 start-page: 3065 issue: 11 year: 2008 ident: 10.1016/j.engstruct.2022.113999_b0215 article-title: Earthquake response of concrete gravity dams including dam–foundation interface nonlinearities publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.04.018 – volume: 14 start-page: 1641 issue: 12 year: 2018 ident: 10.1016/j.engstruct.2022.113999_b0225 article-title: MCS-based response surface metamodels and optimal design of experiments for gravity dams publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2018.1469650 – volume: 13 start-page: 34 issue: 1 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0235 article-title: Taguchi design-based seismic reliability analysis of geostructures publication-title: Georisk Assess Manag Risk Eng Syst Geohazards doi: 10.1080/17499518.2018.1478106 – volume: 29 start-page: 110 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2022.113999_b0160 article-title: Statistical analysis and structural identification in concrete dam monitoring publication-title: Eng Struct doi: 10.1016/j.engstruct.2006.04.022 – volume: 59 start-page: 783 issue: 5 year: 2016 ident: 10.1016/j.engstruct.2022.113999_b0020 article-title: Parameters inversion of high central core rockfill dams based on a novel genetic algorithm publication-title: Sci China Technol Sci doi: 10.1007/s11431-016-6017-2 – ident: 10.1016/j.engstruct.2022.113999_b0115 doi: 10.1109/IJCNN.2004.1380068 – volume: 28 start-page: 93 issue: 1 year: 1998 ident: 10.1016/j.engstruct.2022.113999_b0010 article-title: Estimation of the modulus of elasticity for dam concrete publication-title: Cem Concr Res doi: 10.1016/S0008-8846(97)00214-7 – volume: 19 start-page: 987 issue: 4 year: 2020 ident: 10.1016/j.engstruct.2022.113999_b0125 article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines publication-title: Struct Health Monit doi: 10.1177/1475921719872939 – volume: 42 start-page: 55 issue: 1 year: 2000 ident: 10.1016/j.engstruct.2022.113999_b0135 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – volume: 34 start-page: 423 issue: 6 year: 2007 ident: 10.1016/j.engstruct.2022.113999_b0055 article-title: An intelligent displacement back-analysis method for earth-rockfill dams publication-title: Comput Geotech doi: 10.1016/j.compgeo.2007.03.002 – volume: 38 start-page: 348 year: 2013 ident: 10.1016/j.engstruct.2022.113999_b0030 article-title: Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.07.014 – volume: 65 start-page: 87 year: 2015 ident: 10.1016/j.engstruct.2022.113999_b0105 article-title: Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.11.013 – volume: 33 start-page: 903 issue: 3 year: 2011 ident: 10.1016/j.engstruct.2022.113999_b0150 article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.12.011 – volume: 11 start-page: 283 issue: 2 year: 2021 ident: 10.1016/j.engstruct.2022.113999_b0145 article-title: Concrete arch dam behavior prediction using kernel-extreme learning machines considering thermal effect publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-020-00452-x – volume: 91 start-page: 26 year: 2015 ident: 10.1016/j.engstruct.2022.113999_b0155 article-title: Thermal displacements of concrete dams: Accounting for water temperature in statistical models publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.01.047 – volume: 131 start-page: 60 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0210 article-title: Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2019.03.003 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 10.1016/j.engstruct.2022.113999_b0175 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cogn Comput doi: 10.1007/s12559-014-9255-2 – volume: 23 start-page: 51 issue: 1 year: 2008 ident: 10.1016/j.engstruct.2022.113999_b0190 article-title: A new artificial neural network-based response surface method for structural reliability analysis publication-title: Probabilistic Eng Mech doi: 10.1016/j.probengmech.2007.10.003 – volume: 37 start-page: 1 year: 2017 ident: 10.1016/j.engstruct.2022.113999_b0205 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.04.008 – volume: 148 start-page: 102870 year: 2020 ident: 10.1016/j.engstruct.2022.113999_b0035 article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102870 – volume: 166 start-page: 108161 year: 2020 ident: 10.1016/j.engstruct.2022.113999_b0130 article-title: Prediction, monitoring, and interpretation of dam leakage flow via adaptative kernel extreme learning machine publication-title: Measurement doi: 10.1016/j.measurement.2020.108161 – volume: 28 start-page: 1141 issue: 11 year: 2004 ident: 10.1016/j.engstruct.2022.113999_b0025 article-title: A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.381 – volume: 63 start-page: 13 year: 2015 ident: 10.1016/j.engstruct.2022.113999_b0180 article-title: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.08.010 – volume: 29 start-page: 04014167 issue: 6 year: 2015 ident: 10.1016/j.engstruct.2022.113999_b0045 article-title: Elastic strength diagnosis of the dez concrete arch dam using thermal inverse analysis publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000660 – ident: 10.1016/j.engstruct.2022.113999_b0070 – volume: 37 start-page: 1039 issue: 7 year: 2000 ident: 10.1016/j.engstruct.2022.113999_b0095 article-title: Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(00)00035-6 – volume: 12 start-page: 196 issue: 3 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0085 article-title: Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm publication-title: Water Sci Eng doi: 10.1016/j.wse.2019.09.004 – volume: 131 start-page: 205 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0110 article-title: Improved PLS and PSO methods-based back analysis for elastic modulus of dam publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2019.02.005 – volume: 196 start-page: 109231 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0165 article-title: Concrete gravity dams model parameters updating using static measurements publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.05.072 – volume: 196 start-page: 146 year: 2018 ident: 10.1016/j.engstruct.2022.113999_b0050 article-title: Damage identification using inverse analysis for 3D coupled thermo-hydro-mechanical problems publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.11.008 – volume: 87 start-page: 861 issue: 13-14 year: 2009 ident: 10.1016/j.engstruct.2022.113999_b0015 article-title: Structural inverse analysis by hybrid simplex artificial bee colony algorithms publication-title: Comput Struct doi: 10.1016/j.compstruc.2009.03.001 – volume: 81 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.engstruct.2022.113999_b0195 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(03)00058-9 – volume: 32 start-page: 189 issue: 2 year: 2008 ident: 10.1016/j.engstruct.2022.113999_b0100 article-title: Soil parameter identification using a genetic algorithm publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.614 – volume: 74 start-page: 132 year: 2016 ident: 10.1016/j.engstruct.2022.113999_b0080 article-title: Response surface and genetic method of deformation back analysis for high core rockfill dams publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.01.001 – volume: 12 start-page: 188 issue: 3 year: 2019 ident: 10.1016/j.engstruct.2022.113999_b0090 article-title: Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model publication-title: Water Sci Eng doi: 10.1016/j.wse.2019.09.002 – volume: 1 start-page: 165 issue: 3 year: 2005 ident: 10.1016/j.engstruct.2022.113999_b0140 article-title: Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks publication-title: Struct Infrastruct Eng doi: 10.1080/15732470500030513 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.engstruct.2022.113999_b0230 article-title: Response surface method for material uncertainty quantification of infrastructures publication-title: Shock Vib – volume: 140 year: 2014 ident: 10.1016/j.engstruct.2022.113999_b0185 article-title: Generalized response durface model updating using time domain data publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001100 – volume: 137 start-page: 151 issue: 1-4 year: 2006 ident: 10.1016/j.engstruct.2022.113999_b0005 article-title: Health assessment of concrete dams by overall inverse analyses and neural networks publication-title: Int J Fract doi: 10.1007/s10704-006-6582-7 – volume: 181 start-page: 3508 issue: 16 year: 2011 ident: 10.1016/j.engstruct.2022.113999_b0220 article-title: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions publication-title: Inf Sci doi: 10.1016/j.ins.2011.04.024 |
| SSID | ssj0002880 |
| Score | 2.5433187 |
| Snippet | •A novel method for parameter inverse analysis of concrete dams based on an intelligent response surface model is presented.•Sample data of the proposed model... Inverse analysis by finite element model (FEM) based on measured displacement data is a popular approach for parameter identification of concrete dams.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113999 |
| SubjectTerms | Algorithms Artificial neural networks Comparative studies Computation Concrete dams Cost analysis Dams Displacements Economic analysis Finite element method Gravity dams Hypercubes Inverse/back analysis Jaya optimization algorithm Kernel extreme learning machines Kernels Latin hypercube sampling Machine learning Mathematical models Objective function Optimization Parameter identification Response surface methodology Sampling Sampling methods |
| Title | Multi-parameter inverse analysis of concrete dams using kernel extreme learning machines-based response surface model |
| URI | https://dx.doi.org/10.1016/j.engstruct.2022.113999 https://www.proquest.com/docview/2649299562 |
| Volume | 256 |
| WOSCitedRecordID | wos000770946100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7323 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002880 issn: 0141-0296 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlgUsEE9RKGgWiI3lyvY49gy7CiUqEAUWaZXdyPGMo4R0EpK46o_wv9x5OXFVKCzYWNEkfiTn5Pqe6_tA6F1OwUsg3QxkyQQESpZFIRMAiIgSQSNQY8TUcV8M8uGQjsfsW6fz09fCXC1ypej1NVv9V6hhDcDWpbP_AHdzUFiA1wA6bAF22P4V8KakNtQtvS91qkswUzrzQj8l2LUfAREM3uJWBkI3ZKhNvOC7XCu5CMBY65ChHycxDS5NuqXchPqGp2tdTFKtDDb1uirAKphZOq0A_67FYWDb09brXabiFxeg7stZkww0q_XKeG_BFoyo-Uy2186Wajqv1X6sAmTuLsXFBNCaIpqLVkgzDqOEuYbY1gzTnIQ5sZXI3k4n3X1LG99q_20oYn4i1dR-wRN9GXpwDbNzmNodt4dfef98MOCj3nj0fvUj1MPI9EN7N5nlHjpM8i4DY3l4-qk3_tzc4hNqRvI1l95KHLz13L9ze244AMarGT1Gj5wcwaeWRk9QR6qn6OEegs9QfYNQ2BEKe0LhZYU9obAmFDaEwpZQ2BEKe0LhNqGwJxR2hMKGUM_Reb83-ngWumEdYUlSsg1FJWhR5CmrKNVtfWlakLKI40qCh16KOBZanaZxRfJEggxmMupKUjEpkhQ-OCEv0IFaKvkS4ZxUIpmIOAN1kUasKOgEVPUkS0uqOzeQI5T535KXrpO9Hqiy4D5lcc4bELgGgVsQjlDU7LiyzVzu3uWDB4s7n9T6mhwod_fOxx5e7izEhoMCAUnCQHe8-vPbr9GD3X_oGB3A4eUbdL-82s4267eOkr8Aud276g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+inverse+analysis+of+concrete+dams+using+kernel+extreme+learning+machines-based+response+surface+model&rft.jtitle=Engineering+structures&rft.au=Kang%2C+Fei&rft.au=Liu%2C+Xi&rft.au=Li%2C+Junjie&rft.au=Li%2C+Hongjun&rft.date=2022-04-01&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=256&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2022.113999&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |