Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers
•Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL...
Uloženo v:
| Vydáno v: | Optics and laser technology Ročník 152; s. 108156 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.08.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0030-3992, 1879-2545 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL grading Si-doped CL improved the OCF and gain of DUV LD.
Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD. |
|---|---|
| AbstractList | Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD. •Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL grading Si-doped CL improved the OCF and gain of DUV LD. Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD. |
| ArticleNumber | 108156 |
| Author | Liu, Yuhuai Wang, Fang Sharif, Muhammad Nawaz Wali, Qamar Demir, Ilkay Ajmal Khan, M. |
| Author_xml | – sequence: 1 givenname: Muhammad Nawaz surname: Sharif fullname: Sharif, Muhammad Nawaz email: Nawazkhattak@gs.zzu.edu.cn organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China – sequence: 2 givenname: M. surname: Ajmal Khan fullname: Ajmal Khan, M. organization: Riken Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan – sequence: 3 givenname: Qamar surname: Wali fullname: Wali, Qamar organization: School of Applied Sciences & Humanities, National University of Technology Islamabad, Pakistan – sequence: 4 givenname: Ilkay surname: Demir fullname: Demir, Ilkay organization: Nanophotonics Research and Application Center, Department of Nanotechnology Engineering, Sivas Cumhuriyet University, 58140 Sivas, Turkey – sequence: 5 givenname: Fang surname: Wang fullname: Wang, Fang email: iefwang@zzu.edu.cn organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China – sequence: 6 givenname: Yuhuai surname: Liu fullname: Liu, Yuhuai email: ieyhliu@zzu.edu.cn organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China |
| BookMark | eNqNkE1LxDAQhoMouH78BgueuybNR5ODh0X8AlFBPYeYTDVLt6lJVth_b8qKBy96GpiZ553hOUC7QxgAoROC5wQTcbachzH3JmWw8wY3TelKwsUOmhHZqrrhjO-iGcYU11SpZh8dpLTEGDPB6QyFR4hdiCszWKhgeJ_qCoZcha5a9NfmvnIAY73uczSfPvSQq3ILYuV8cFCtkx_eKhtWY0g--zCYvmD1WzRuGpSQJ1-7MIIr2AZiOkJ7nekTHH_XQ_Rydfl8cVPfPVzfXizuaksZzbWjnXslr5IIJZniBFonlAIuKYByjErLDZa8gc6wVgCWTjKmjKNMMCckoYfodJs7xvCxhpT1MqxjeS_pRrSMUSI5LVvtdsvGkFKETo_Rr0zcaIL1ZFcv9Y9dPdnVW7uFPP9FWp_NZKCI8v0_-MWWhyLh00PUyXoo8p2PYLN2wf-Z8QWPf58J |
| CitedBy_id | crossref_primary_10_1007_s00340_023_08088_7 crossref_primary_10_1016_j_micrna_2024_207872 crossref_primary_10_1364_OL_561985 crossref_primary_10_1016_j_optlastec_2024_110828 crossref_primary_10_1140_epjp_s13360_022_03007_9 crossref_primary_10_1016_j_optlastec_2022_109052 crossref_primary_10_1016_j_ijleo_2023_170828 crossref_primary_10_1088_1402_4896_ad0e4c crossref_primary_10_1007_s10946_023_10139_5 crossref_primary_10_1016_j_ijleo_2023_171127 crossref_primary_10_1007_s00340_022_07906_8 crossref_primary_10_1007_s10946_023_10148_4 crossref_primary_10_1140_epjd_s10053_024_00811_z crossref_primary_10_1016_j_optlastec_2024_112025 crossref_primary_10_1016_j_micrna_2025_208275 crossref_primary_10_1088_1361_6463_ad7eca crossref_primary_10_1016_j_ijleo_2023_171002 crossref_primary_10_1117_1_OE_61_7_076113 crossref_primary_10_1088_1402_4896_ad185f |
| Cites_doi | 10.1063/5.0015554 10.1016/j.spmi.2021.107022 10.1016/j.ifset.2019.04.006 10.1016/0022-2313(73)90072-0 10.1063/1.96549 10.1063/1.1448668 10.1002/pssa.201800815 10.35848/1882-0786/ab7caf 10.1016/j.spmi.2020.106643 10.1016/j.watres.2017.12.079 10.1134/S1063782608070166 10.7567/1882-0786/ab50e0 10.1063/5.0046224 10.1088/1361-6641/ab8c2a 10.1021/acsaelm.0c00172 10.1088/1361-6641/abeff6 10.1038/nphoton.2007.293 10.35848/1882-0786/ab9e4a 10.1016/j.sse.2005.09.002 10.1002/pssb.201552062 10.1063/5.0027789 10.1038/s41598-022-04876-x 10.1063/5.0007460 10.1038/s41598-020-67211-2 10.35848/1347-4065/ac10f2 10.35848/1347-4065/ac3025 10.1364/OE.27.00A620 10.1016/j.ajic.2020.07.031 10.1088/1674-4926/40/12/122802 10.1063/5.0027697 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright Elsevier BV Aug 2022 |
| Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Aug 2022 |
| DBID | AAYXX CITATION 7SP 7U5 8FD F28 FR3 H8D L7M |
| DOI | 10.1016/j.optlastec.2022.108156 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-2545 |
| ExternalDocumentID | 10_1016_j_optlastec_2022_108156 S0030399222003139 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7U5 8FD F28 FR3 H8D L7M |
| ID | FETCH-LOGICAL-c343t-d3fdb1b816984951e7d699e583ee9d438c5a0852efa476e08d8449ad3464d6813 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793297500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0030-3992 |
| IngestDate | Sun Nov 30 04:23:51 EST 2025 Tue Nov 18 22:08:45 EST 2025 Sat Nov 29 07:27:01 EST 2025 Fri Feb 23 02:38:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep-ultraviolet laser diode Compositional grading of AlGaN Cladding layer Waveguide layer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-d3fdb1b816984951e7d699e583ee9d438c5a0852efa476e08d8449ad3464d6813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2674431853 |
| PQPubID | 2045422 |
| ParticipantIDs | proquest_journals_2674431853 crossref_primary_10_1016_j_optlastec_2022_108156 crossref_citationtrail_10_1016_j_optlastec_2022_108156 elsevier_sciencedirect_doi_10_1016_j_optlastec_2022_108156 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Optics and laser technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Fiorentini, Bernardini, Ambacher (b0145) 2002; 80 Murotani (b0060) 2020; 128 Muhammad (b0045) 2021 Matafonova, Batoev (b0015) 2018; 132 Zhang (b0085) 2020; 10 Zhang (b0095) 2019; 12 Buonanno (b0025) 2020; 10 Shaklee, Nahory, Leheny (b0170) 1973; 7 Heilingloh (b0030) 2020; 48 Khan, Maeda, Yun (b0185) 2022; 12 Sharif (b0135) 2021; 158 Khan, Balakrishnan, Katona (b0050) 2008; 2 Liu (b0080) 2020; 35 Murotani (b0090) 2020; 117 Kneissl, Rass (b0005) 2016 Amano (b0020) 1986; 48 Zhang (b0100) 2020; 117 Nakamura, Fasol (b0125) 2013 Omori (b0110) 2020; 13 Tanaka (b0120) 2021; 118 Sharif (b0130) 2021; 36 Slobodyan, Bulashevich, Karpov (b0165) 2008; 42 Saito (b0035) 2021 Harris (b0075) 2019; 3 Tanaka (b0115) 2020; 13 Niass (b0155) 2019; 40 Lyons (b0070) 2015; 252 Chu (b0175) 2019; 27 Turin (b0160) 2005; 49 Yamada (b0180) 2021; 60 Hinds (b0010) 2019; 56 Casey, Panish (b0105) 1978; vol. 1 Chu (b0040) 2019; 216 Khan (b0065) 2020; 2 Nawaz (b0150) 2020; 145 Yoshinobu (b0055) 2012; 2012 Sharif (b0140) 2021 Fiorentini (10.1016/j.optlastec.2022.108156_b0145) 2002; 80 Heilingloh (10.1016/j.optlastec.2022.108156_b0030) 2020; 48 Yamada (10.1016/j.optlastec.2022.108156_b0180) 2021; 60 Chu (10.1016/j.optlastec.2022.108156_b0040) 2019; 216 Slobodyan (10.1016/j.optlastec.2022.108156_b0165) 2008; 42 Khan (10.1016/j.optlastec.2022.108156_b0050) 2008; 2 Murotani (10.1016/j.optlastec.2022.108156_b0060) 2020; 128 Hinds (10.1016/j.optlastec.2022.108156_b0010) 2019; 56 Yoshinobu (10.1016/j.optlastec.2022.108156_b0055) 2012; 2012 Khan (10.1016/j.optlastec.2022.108156_b0065) 2020; 2 Casey (10.1016/j.optlastec.2022.108156_b0105) 1978; vol. 1 Kneissl (10.1016/j.optlastec.2022.108156_b0005) 2016 Sharif (10.1016/j.optlastec.2022.108156_b0140) 2021 Chu (10.1016/j.optlastec.2022.108156_b0175) 2019; 27 Nawaz (10.1016/j.optlastec.2022.108156_b0150) 2020; 145 Khan (10.1016/j.optlastec.2022.108156_b0185) 2022; 12 Nakamura (10.1016/j.optlastec.2022.108156_b0125) 2013 Sharif (10.1016/j.optlastec.2022.108156_b0130) 2021; 36 Saito (10.1016/j.optlastec.2022.108156_b0035) 2021 Murotani (10.1016/j.optlastec.2022.108156_b0090) 2020; 117 Amano (10.1016/j.optlastec.2022.108156_b0020) 1986; 48 Zhang (10.1016/j.optlastec.2022.108156_b0100) 2020; 117 Sharif (10.1016/j.optlastec.2022.108156_b0135) 2021; 158 Harris (10.1016/j.optlastec.2022.108156_b0075) 2019; 3 Tanaka (10.1016/j.optlastec.2022.108156_b0115) 2020; 13 Shaklee (10.1016/j.optlastec.2022.108156_b0170) 1973; 7 Omori (10.1016/j.optlastec.2022.108156_b0110) 2020; 13 Zhang (10.1016/j.optlastec.2022.108156_b0085) 2020; 10 Liu (10.1016/j.optlastec.2022.108156_b0080) 2020; 35 Matafonova (10.1016/j.optlastec.2022.108156_b0015) 2018; 132 Muhammad (10.1016/j.optlastec.2022.108156_b0045) 2021 Turin (10.1016/j.optlastec.2022.108156_b0160) 2005; 49 Niass (10.1016/j.optlastec.2022.108156_b0155) 2019; 40 Zhang (10.1016/j.optlastec.2022.108156_b0095) 2019; 12 Buonanno (10.1016/j.optlastec.2022.108156_b0025) 2020; 10 Tanaka (10.1016/j.optlastec.2022.108156_b0120) 2021; 118 Lyons (10.1016/j.optlastec.2022.108156_b0070) 2015; 252 |
| References_xml | – volume: 13 year: 2020 ident: b0115 article-title: Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers publication-title: Appl. Phys. Express – volume: 118 year: 2021 ident: b0120 article-title: AlGaN-based UV-B laser diode with a high optical confinement factor publication-title: Appl. Phys. Lett. – year: 2013 ident: b0125 article-title: The blue laser diode: GaN based light emitters and lasers – volume: 42 start-page: 852 year: 2008 end-page: 857 ident: b0165 article-title: Optical confinement in laser diodes based on nitrides of Group III elements. Part 2: Analysis of heterostructures on various substrates publication-title: Semiconductors – volume: 80 start-page: 1204 year: 2002 end-page: 1206 ident: b0145 article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures publication-title: Appl. Phys. Lett. – volume: 60 year: 2021 ident: b0180 article-title: Evaluation of internal quantum efficiency and stimulated emission characteristics in AlGaN-based multiple quantum wells publication-title: Jpn. J. Appl. Phys. – volume: vol. 1 year: 1978 ident: b0105 publication-title: Heterostructure lasers – volume: 12 year: 2019 ident: b0095 article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation publication-title: Appl. Phys. Express – volume: 10 year: 2020 ident: b0085 article-title: Improving hole injection from p-EBL down to the end of active region by simply playing with polarization effect for AlGaN based DUV light-emitting diodes publication-title: AIP Adv. – volume: 158 year: 2021 ident: b0135 article-title: p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode publication-title: Superlattices Microstruct. – year: 2021 ident: b0045 article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED publication-title: Nanotechnology – volume: 216 start-page: 1800815 year: 2019 ident: b0040 article-title: Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes publication-title: Physica Status Solidi (A) – volume: 252 start-page: 900 year: 2015 end-page: 908 ident: b0070 article-title: First-principles theory of acceptors in nitride semiconductors publication-title: Phys. Status Solidi (b) – year: 2021 ident: b0140 article-title: Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer publication-title: Nanotechnology – volume: 7 start-page: 284 year: 1973 end-page: 309 ident: b0170 article-title: Optical gain in semiconductors publication-title: J. Lumin. – volume: 27 start-page: A620 year: 2019 end-page: A628 ident: b0175 article-title: On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer publication-title: Opt. Express – volume: 36 year: 2021 ident: b0130 article-title: The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode publication-title: Semicond. Sci. Technol. – volume: 3 year: 2019 ident: b0075 article-title: Oxygen and silicon point defects in Al 0.65 Ga 0.35 N publication-title: Phys. Rev. Mater. – volume: 12 start-page: 2591 year: 2022 ident: b0185 article-title: Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance publication-title: Sci. Rep. – volume: 117 year: 2020 ident: b0100 article-title: Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes publication-title: Appl. Phys. Lett. – volume: 128 year: 2020 ident: b0060 article-title: Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells publication-title: J. Appl. Phys. – volume: 48 start-page: 353 year: 1986 end-page: 355 ident: b0020 article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer publication-title: Appl. Phys. Lett. – volume: 49 start-page: 1678 year: 2005 end-page: 1682 ident: b0160 article-title: A modified transferred-electron high-field mobility model for GaN devices simulation publication-title: Solid-State Electron. – volume: 132 start-page: 177 year: 2018 end-page: 189 ident: b0015 article-title: Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review publication-title: Water Res. – year: 2016 ident: b0005 article-title: III-Nitride ultraviolet emitters – volume: 117 year: 2020 ident: b0090 article-title: High internal quantum efficiency and optically pumped stimulated emission in AlGaN-based UV-C multiple quantum wells publication-title: Appl. Phys. Lett. – year: 2021 ident: b0035 article-title: Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application publication-title: Jpn. J. Appl. Phys. – volume: 13 year: 2020 ident: b0110 article-title: Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping publication-title: Appl. Phys. Express – volume: 10 start-page: 10285 year: 2020 ident: b0025 article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses publication-title: Sci. Rep. – volume: 2012 year: 2012 ident: b0055 article-title: High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone publication-title: J. Environ. Prot. – volume: 40 start-page: 122802 year: 2019 ident: b0155 article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate publication-title: J. Semicond. – volume: 56 year: 2019 ident: b0010 article-title: Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications publication-title: Innov. Food Sci. Emerg. Technol. – volume: 2 start-page: 1892 year: 2020 end-page: 1907 ident: b0065 article-title: External Quantum Efficiency of 6.5% at 300 nm Emission and 4.7% at 310 nm Emission on Bare Wafer of AlGaN-Based UVB LEDs publication-title: ACS Appl. Electron. Mater. – volume: 145 year: 2020 ident: b0150 article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide publication-title: Superlattices Microstruct. – volume: 2 start-page: 77 year: 2008 end-page: 84 ident: b0050 article-title: Ultraviolet light-emitting diodes based on group three nitrides publication-title: Nat. Photonics – volume: 35 year: 2020 ident: b0080 article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes publication-title: Semicond. Sci. Technol. – volume: 48 start-page: 1273 year: 2020 end-page: 1275 ident: b0030 article-title: Susceptibility of SARS-CoV-2 to UV irradiation publication-title: Am. J. Infect. Control – volume: 3 issue: 5 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0075 article-title: Oxygen and silicon point defects in Al 0.65 Ga 0.35 N publication-title: Phys. Rev. Mater. – year: 2013 ident: 10.1016/j.optlastec.2022.108156_b0125 – volume: 128 issue: 10 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0060 article-title: Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells publication-title: J. Appl. Phys. doi: 10.1063/5.0015554 – volume: vol. 1 year: 1978 ident: 10.1016/j.optlastec.2022.108156_b0105 – volume: 158 year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0135 article-title: p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2021.107022 – volume: 56 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0010 article-title: Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications publication-title: Innov. Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2019.04.006 – volume: 7 start-page: 284 year: 1973 ident: 10.1016/j.optlastec.2022.108156_b0170 article-title: Optical gain in semiconductors publication-title: J. Lumin. doi: 10.1016/0022-2313(73)90072-0 – volume: 48 start-page: 353 issue: 5 year: 1986 ident: 10.1016/j.optlastec.2022.108156_b0020 article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer publication-title: Appl. Phys. Lett. doi: 10.1063/1.96549 – volume: 2012 year: 2012 ident: 10.1016/j.optlastec.2022.108156_b0055 article-title: High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone publication-title: J. Environ. Prot. – volume: 80 start-page: 1204 issue: 7 year: 2002 ident: 10.1016/j.optlastec.2022.108156_b0145 article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.1448668 – volume: 216 start-page: 1800815 issue: 4 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0040 article-title: Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes publication-title: Physica Status Solidi (A) doi: 10.1002/pssa.201800815 – volume: 13 issue: 4 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0115 article-title: Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ab7caf – volume: 145 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0150 article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2020.106643 – volume: 132 start-page: 177 year: 2018 ident: 10.1016/j.optlastec.2022.108156_b0015 article-title: Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review publication-title: Water Res. doi: 10.1016/j.watres.2017.12.079 – volume: 42 start-page: 852 issue: 7 year: 2008 ident: 10.1016/j.optlastec.2022.108156_b0165 article-title: Optical confinement in laser diodes based on nitrides of Group III elements. Part 2: Analysis of heterostructures on various substrates publication-title: Semiconductors doi: 10.1134/S1063782608070166 – volume: 12 issue: 12 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0095 article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab50e0 – volume: 118 issue: 16 year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0120 article-title: AlGaN-based UV-B laser diode with a high optical confinement factor publication-title: Appl. Phys. Lett. doi: 10.1063/5.0046224 – year: 2016 ident: 10.1016/j.optlastec.2022.108156_b0005 – volume: 35 issue: 7 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0080 article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab8c2a – volume: 2 start-page: 1892 issue: 7 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0065 article-title: External Quantum Efficiency of 6.5% at 300 nm Emission and 4.7% at 310 nm Emission on Bare Wafer of AlGaN-Based UVB LEDs publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00172 – volume: 36 issue: 5 year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0130 article-title: The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/abeff6 – volume: 2 start-page: 77 issue: 2 year: 2008 ident: 10.1016/j.optlastec.2022.108156_b0050 article-title: Ultraviolet light-emitting diodes based on group three nitrides publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.293 – volume: 13 issue: 7 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0110 article-title: Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ab9e4a – volume: 49 start-page: 1678 issue: 10 year: 2005 ident: 10.1016/j.optlastec.2022.108156_b0160 article-title: A modified transferred-electron high-field mobility model for GaN devices simulation publication-title: Solid-State Electron. doi: 10.1016/j.sse.2005.09.002 – volume: 252 start-page: 900 issue: 5 year: 2015 ident: 10.1016/j.optlastec.2022.108156_b0070 article-title: First-principles theory of acceptors in nitride semiconductors publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.201552062 – volume: 117 issue: 15 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0100 article-title: Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes publication-title: Appl. Phys. Lett. doi: 10.1063/5.0027789 – volume: 12 start-page: 2591 year: 2022 ident: 10.1016/j.optlastec.2022.108156_b0185 article-title: Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance publication-title: Sci. Rep. doi: 10.1038/s41598-022-04876-x – year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0045 article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED publication-title: Nanotechnology – year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0140 article-title: Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer publication-title: Nanotechnology – volume: 10 issue: 6 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0085 article-title: Improving hole injection from p-EBL down to the end of active region by simply playing with polarization effect for AlGaN based DUV light-emitting diodes publication-title: AIP Adv. doi: 10.1063/5.0007460 – volume: 10 start-page: 10285 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0025 article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses publication-title: Sci. Rep. doi: 10.1038/s41598-020-67211-2 – year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0035 article-title: Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ac10f2 – volume: 60 year: 2021 ident: 10.1016/j.optlastec.2022.108156_b0180 article-title: Evaluation of internal quantum efficiency and stimulated emission characteristics in AlGaN-based multiple quantum wells publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ac3025 – volume: 27 start-page: A620 issue: 12 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0175 article-title: On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer publication-title: Opt. Express doi: 10.1364/OE.27.00A620 – volume: 48 start-page: 1273 issue: 10 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0030 article-title: Susceptibility of SARS-CoV-2 to UV irradiation publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2020.07.031 – volume: 40 start-page: 122802 issue: 12 year: 2019 ident: 10.1016/j.optlastec.2022.108156_b0155 article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate publication-title: J. Semicond. doi: 10.1088/1674-4926/40/12/122802 – volume: 117 issue: 16 year: 2020 ident: 10.1016/j.optlastec.2022.108156_b0090 article-title: High internal quantum efficiency and optically pumped stimulated emission in AlGaN-based UV-C multiple quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/5.0027697 |
| SSID | ssj0004653 |
| Score | 2.4629855 |
| Snippet | •Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs),... Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108156 |
| SubjectTerms | Aluminum gallium nitrides Carrier injection Cladding layer Compositional grading of AlGaN Confinement Current density Deep-ultraviolet laser diode Performance enhancement Semiconductor lasers Silicon Threshold currents Ultraviolet lasers Waveguide layer Waveguides |
| Title | Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers |
| URI | https://dx.doi.org/10.1016/j.optlastec.2022.108156 https://www.proquest.com/docview/2674431853 |
| Volume | 152 |
| WOSCitedRecordID | wos000793297500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004653 issn: 0030-3992 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKBxIcEAwQg4F84FalamrXsblVMGDAypAG6i1yY2dtyS-16Rj8M_yr2I6dpmWo7MAlrSL5Je77-vL88r3PALzQO0vHCDMv1mq3euNtjyEuvQlnvZjHccRNl-vXj8FoRMdjdtpq_XK9MBdJkGX08pIV_9XV6pxytm6dvYa7a6PqhPqunK6Oyu3q-E-OP220Ashsqj_dC_9h8paPOkLKwlsl5YKbt_JlRyXQep_wWS5kZ-W6cB2bS7sw8c4XhmtvWlxmnsgLlacm_Ielz7vs9lNRiz5XNss_CvdaIHpmhCBPVlOeplyoAP-d_6yBN0_VFT9Mq7rsSbdR8De8g8885TWf-LVMZwZxx8k3SwayBQy19nX0uTooI_UoYGwzKFe6tjas-j0tanNlxK-KD_NuXpRqZmpaXX2N7nrEpsb21rOvZiQ6sts8rA2F2lBYGboB9vrBgNE22BseH43fN1pvrdCpncMGhfDKe_pbArSVCpj85uweuGsXJnBYAeo-aMlsH9xpyFXug1uGLhwtH4C8ATLYABnMY2hABrdBBg0goAEZNCCDGyCDa5BpIw5ksALZQ_DlzdHZq3ee3brDixBGpSdQLCb-hPqEUbUE92UgCGNyQJGUTGBEowFXyX5fxhwHRPaooBgzLhAmWBDqo0egneWZfAyg35dsgHo4joTAnPQniE-imHBJCReYyANA3O8ZRlbXXm-vkoQ7fHoAevXAopJ22T3kpXNYaDPUKvMMFRx3Dz50Lg5tvFiGfRJgrBUM0JPr385TcHv9hzoE7XKxks_AzeiinC0Xzy1UfwN4E8Sc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+AlGaN+deep-ultraviolet+laser+diode+using+compositional+Al-grading+of+Si-doped+layers&rft.jtitle=Optics+and+laser+technology&rft.au=Sharif%2C+Muhammad+Nawaz&rft.au=Ajmal+Khan%2C+M.&rft.au=Wali%2C+Qamar&rft.au=Demir%2C+Ilkay&rft.date=2022-08-01&rft.issn=0030-3992&rft.volume=152&rft.spage=108156&rft_id=info:doi/10.1016%2Fj.optlastec.2022.108156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2022_108156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |