Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers

•Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics and laser technology Ročník 152; s. 108156
Hlavní autoři: Sharif, Muhammad Nawaz, Ajmal Khan, M., Wali, Qamar, Demir, Ilkay, Wang, Fang, Liu, Yuhuai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.08.2022
Elsevier BV
Témata:
ISSN:0030-3992, 1879-2545
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL grading Si-doped CL improved the OCF and gain of DUV LD. Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD.
AbstractList Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD.
•Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs), electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved.•Along with WGs and EBL grading Si-doped CL improved the OCF and gain of DUV LD. Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride (AlGaN)-based deep-ultraviolet (DUV) laser diode (LD). In this work, compositional Al-grading of AlGaN layers is used to increase the optical confinement factor (OCF), carrier injection efficiency, gain, and emission power of the DUV LD. Compositional grading of waveguides (WGs) layer, electron blocking layer (EBL), and cladding layers (CLs) demonstrated that the device characteristic can be improved. By using compositional Al-grading of AlGaN p-WG, EBL, p-CL along with n-WG and n-CL, 17.4% OCF, 94.4 mW emission power, and 1369 m−1 gain at 267 nm peak emission wavelength are achieved. These improvements are attributed to the reduced threshold current density as well as using better optical confinement scheme in the DUV LD.
ArticleNumber 108156
Author Liu, Yuhuai
Wang, Fang
Sharif, Muhammad Nawaz
Wali, Qamar
Demir, Ilkay
Ajmal Khan, M.
Author_xml – sequence: 1
  givenname: Muhammad Nawaz
  surname: Sharif
  fullname: Sharif, Muhammad Nawaz
  email: Nawazkhattak@gs.zzu.edu.cn
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
– sequence: 2
  givenname: M.
  surname: Ajmal Khan
  fullname: Ajmal Khan, M.
  organization: Riken Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
– sequence: 3
  givenname: Qamar
  surname: Wali
  fullname: Wali, Qamar
  organization: School of Applied Sciences & Humanities, National University of Technology Islamabad, Pakistan
– sequence: 4
  givenname: Ilkay
  surname: Demir
  fullname: Demir, Ilkay
  organization: Nanophotonics Research and Application Center, Department of Nanotechnology Engineering, Sivas Cumhuriyet University, 58140 Sivas, Turkey
– sequence: 5
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: iefwang@zzu.edu.cn
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
– sequence: 6
  givenname: Yuhuai
  surname: Liu
  fullname: Liu, Yuhuai
  email: ieyhliu@zzu.edu.cn
  organization: National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, and Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
BookMark eNqNkE1LxDAQhoMouH78BgueuybNR5ODh0X8AlFBPYeYTDVLt6lJVth_b8qKBy96GpiZ553hOUC7QxgAoROC5wQTcbachzH3JmWw8wY3TelKwsUOmhHZqrrhjO-iGcYU11SpZh8dpLTEGDPB6QyFR4hdiCszWKhgeJ_qCoZcha5a9NfmvnIAY73uczSfPvSQq3ILYuV8cFCtkx_eKhtWY0g--zCYvmD1WzRuGpSQJ1-7MIIr2AZiOkJ7nekTHH_XQ_Rydfl8cVPfPVzfXizuaksZzbWjnXslr5IIJZniBFonlAIuKYByjErLDZa8gc6wVgCWTjKmjKNMMCckoYfodJs7xvCxhpT1MqxjeS_pRrSMUSI5LVvtdsvGkFKETo_Rr0zcaIL1ZFcv9Y9dPdnVW7uFPP9FWp_NZKCI8v0_-MWWhyLh00PUyXoo8p2PYLN2wf-Z8QWPf58J
CitedBy_id crossref_primary_10_1007_s00340_023_08088_7
crossref_primary_10_1016_j_micrna_2024_207872
crossref_primary_10_1364_OL_561985
crossref_primary_10_1016_j_optlastec_2024_110828
crossref_primary_10_1140_epjp_s13360_022_03007_9
crossref_primary_10_1016_j_optlastec_2022_109052
crossref_primary_10_1016_j_ijleo_2023_170828
crossref_primary_10_1088_1402_4896_ad0e4c
crossref_primary_10_1007_s10946_023_10139_5
crossref_primary_10_1016_j_ijleo_2023_171127
crossref_primary_10_1007_s00340_022_07906_8
crossref_primary_10_1007_s10946_023_10148_4
crossref_primary_10_1140_epjd_s10053_024_00811_z
crossref_primary_10_1016_j_optlastec_2024_112025
crossref_primary_10_1016_j_micrna_2025_208275
crossref_primary_10_1088_1361_6463_ad7eca
crossref_primary_10_1016_j_ijleo_2023_171002
crossref_primary_10_1117_1_OE_61_7_076113
crossref_primary_10_1088_1402_4896_ad185f
Cites_doi 10.1063/5.0015554
10.1016/j.spmi.2021.107022
10.1016/j.ifset.2019.04.006
10.1016/0022-2313(73)90072-0
10.1063/1.96549
10.1063/1.1448668
10.1002/pssa.201800815
10.35848/1882-0786/ab7caf
10.1016/j.spmi.2020.106643
10.1016/j.watres.2017.12.079
10.1134/S1063782608070166
10.7567/1882-0786/ab50e0
10.1063/5.0046224
10.1088/1361-6641/ab8c2a
10.1021/acsaelm.0c00172
10.1088/1361-6641/abeff6
10.1038/nphoton.2007.293
10.35848/1882-0786/ab9e4a
10.1016/j.sse.2005.09.002
10.1002/pssb.201552062
10.1063/5.0027789
10.1038/s41598-022-04876-x
10.1063/5.0007460
10.1038/s41598-020-67211-2
10.35848/1347-4065/ac10f2
10.35848/1347-4065/ac3025
10.1364/OE.27.00A620
10.1016/j.ajic.2020.07.031
10.1088/1674-4926/40/12/122802
10.1063/5.0027697
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Aug 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Aug 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.optlastec.2022.108156
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2022_108156
S0030399222003139
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7U5
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c343t-d3fdb1b816984951e7d699e583ee9d438c5a0852efa476e08d8449ad3464d6813
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793297500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3992
IngestDate Sun Nov 30 04:23:51 EST 2025
Tue Nov 18 22:08:45 EST 2025
Sat Nov 29 07:27:01 EST 2025
Fri Feb 23 02:38:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep-ultraviolet laser diode
Compositional grading of AlGaN
Cladding layer
Waveguide layer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-d3fdb1b816984951e7d699e583ee9d438c5a0852efa476e08d8449ad3464d6813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2674431853
PQPubID 2045422
ParticipantIDs proquest_journals_2674431853
crossref_primary_10_1016_j_optlastec_2022_108156
crossref_citationtrail_10_1016_j_optlastec_2022_108156
elsevier_sciencedirect_doi_10_1016_j_optlastec_2022_108156
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Optics and laser technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fiorentini, Bernardini, Ambacher (b0145) 2002; 80
Murotani (b0060) 2020; 128
Muhammad (b0045) 2021
Matafonova, Batoev (b0015) 2018; 132
Zhang (b0085) 2020; 10
Zhang (b0095) 2019; 12
Buonanno (b0025) 2020; 10
Shaklee, Nahory, Leheny (b0170) 1973; 7
Heilingloh (b0030) 2020; 48
Khan, Maeda, Yun (b0185) 2022; 12
Sharif (b0135) 2021; 158
Khan, Balakrishnan, Katona (b0050) 2008; 2
Liu (b0080) 2020; 35
Murotani (b0090) 2020; 117
Kneissl, Rass (b0005) 2016
Amano (b0020) 1986; 48
Zhang (b0100) 2020; 117
Nakamura, Fasol (b0125) 2013
Omori (b0110) 2020; 13
Tanaka (b0120) 2021; 118
Sharif (b0130) 2021; 36
Slobodyan, Bulashevich, Karpov (b0165) 2008; 42
Saito (b0035) 2021
Harris (b0075) 2019; 3
Tanaka (b0115) 2020; 13
Niass (b0155) 2019; 40
Lyons (b0070) 2015; 252
Chu (b0175) 2019; 27
Turin (b0160) 2005; 49
Yamada (b0180) 2021; 60
Hinds (b0010) 2019; 56
Casey, Panish (b0105) 1978; vol. 1
Chu (b0040) 2019; 216
Khan (b0065) 2020; 2
Nawaz (b0150) 2020; 145
Yoshinobu (b0055) 2012; 2012
Sharif (b0140) 2021
Fiorentini (10.1016/j.optlastec.2022.108156_b0145) 2002; 80
Heilingloh (10.1016/j.optlastec.2022.108156_b0030) 2020; 48
Yamada (10.1016/j.optlastec.2022.108156_b0180) 2021; 60
Chu (10.1016/j.optlastec.2022.108156_b0040) 2019; 216
Slobodyan (10.1016/j.optlastec.2022.108156_b0165) 2008; 42
Khan (10.1016/j.optlastec.2022.108156_b0050) 2008; 2
Murotani (10.1016/j.optlastec.2022.108156_b0060) 2020; 128
Hinds (10.1016/j.optlastec.2022.108156_b0010) 2019; 56
Yoshinobu (10.1016/j.optlastec.2022.108156_b0055) 2012; 2012
Khan (10.1016/j.optlastec.2022.108156_b0065) 2020; 2
Casey (10.1016/j.optlastec.2022.108156_b0105) 1978; vol. 1
Kneissl (10.1016/j.optlastec.2022.108156_b0005) 2016
Sharif (10.1016/j.optlastec.2022.108156_b0140) 2021
Chu (10.1016/j.optlastec.2022.108156_b0175) 2019; 27
Nawaz (10.1016/j.optlastec.2022.108156_b0150) 2020; 145
Khan (10.1016/j.optlastec.2022.108156_b0185) 2022; 12
Nakamura (10.1016/j.optlastec.2022.108156_b0125) 2013
Sharif (10.1016/j.optlastec.2022.108156_b0130) 2021; 36
Saito (10.1016/j.optlastec.2022.108156_b0035) 2021
Murotani (10.1016/j.optlastec.2022.108156_b0090) 2020; 117
Amano (10.1016/j.optlastec.2022.108156_b0020) 1986; 48
Zhang (10.1016/j.optlastec.2022.108156_b0100) 2020; 117
Sharif (10.1016/j.optlastec.2022.108156_b0135) 2021; 158
Harris (10.1016/j.optlastec.2022.108156_b0075) 2019; 3
Tanaka (10.1016/j.optlastec.2022.108156_b0115) 2020; 13
Shaklee (10.1016/j.optlastec.2022.108156_b0170) 1973; 7
Omori (10.1016/j.optlastec.2022.108156_b0110) 2020; 13
Zhang (10.1016/j.optlastec.2022.108156_b0085) 2020; 10
Liu (10.1016/j.optlastec.2022.108156_b0080) 2020; 35
Matafonova (10.1016/j.optlastec.2022.108156_b0015) 2018; 132
Muhammad (10.1016/j.optlastec.2022.108156_b0045) 2021
Turin (10.1016/j.optlastec.2022.108156_b0160) 2005; 49
Niass (10.1016/j.optlastec.2022.108156_b0155) 2019; 40
Zhang (10.1016/j.optlastec.2022.108156_b0095) 2019; 12
Buonanno (10.1016/j.optlastec.2022.108156_b0025) 2020; 10
Tanaka (10.1016/j.optlastec.2022.108156_b0120) 2021; 118
Lyons (10.1016/j.optlastec.2022.108156_b0070) 2015; 252
References_xml – volume: 13
  year: 2020
  ident: b0115
  article-title: Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers
  publication-title: Appl. Phys. Express
– volume: 118
  year: 2021
  ident: b0120
  article-title: AlGaN-based UV-B laser diode with a high optical confinement factor
  publication-title: Appl. Phys. Lett.
– year: 2013
  ident: b0125
  article-title: The blue laser diode: GaN based light emitters and lasers
– volume: 42
  start-page: 852
  year: 2008
  end-page: 857
  ident: b0165
  article-title: Optical confinement in laser diodes based on nitrides of Group III elements. Part 2: Analysis of heterostructures on various substrates
  publication-title: Semiconductors
– volume: 80
  start-page: 1204
  year: 2002
  end-page: 1206
  ident: b0145
  article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures
  publication-title: Appl. Phys. Lett.
– volume: 60
  year: 2021
  ident: b0180
  article-title: Evaluation of internal quantum efficiency and stimulated emission characteristics in AlGaN-based multiple quantum wells
  publication-title: Jpn. J. Appl. Phys.
– volume: vol. 1
  year: 1978
  ident: b0105
  publication-title: Heterostructure lasers
– volume: 12
  year: 2019
  ident: b0095
  article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation
  publication-title: Appl. Phys. Express
– volume: 10
  year: 2020
  ident: b0085
  article-title: Improving hole injection from p-EBL down to the end of active region by simply playing with polarization effect for AlGaN based DUV light-emitting diodes
  publication-title: AIP Adv.
– volume: 158
  year: 2021
  ident: b0135
  article-title: p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode
  publication-title: Superlattices Microstruct.
– year: 2021
  ident: b0045
  article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED
  publication-title: Nanotechnology
– volume: 216
  start-page: 1800815
  year: 2019
  ident: b0040
  article-title: Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes
  publication-title: Physica Status Solidi (A)
– volume: 252
  start-page: 900
  year: 2015
  end-page: 908
  ident: b0070
  article-title: First-principles theory of acceptors in nitride semiconductors
  publication-title: Phys. Status Solidi (b)
– year: 2021
  ident: b0140
  article-title: Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer
  publication-title: Nanotechnology
– volume: 7
  start-page: 284
  year: 1973
  end-page: 309
  ident: b0170
  article-title: Optical gain in semiconductors
  publication-title: J. Lumin.
– volume: 27
  start-page: A620
  year: 2019
  end-page: A628
  ident: b0175
  article-title: On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer
  publication-title: Opt. Express
– volume: 36
  year: 2021
  ident: b0130
  article-title: The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode
  publication-title: Semicond. Sci. Technol.
– volume: 3
  year: 2019
  ident: b0075
  article-title: Oxygen and silicon point defects in Al 0.65 Ga 0.35 N
  publication-title: Phys. Rev. Mater.
– volume: 12
  start-page: 2591
  year: 2022
  ident: b0185
  article-title: Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance
  publication-title: Sci. Rep.
– volume: 117
  year: 2020
  ident: b0100
  article-title: Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes
  publication-title: Appl. Phys. Lett.
– volume: 128
  year: 2020
  ident: b0060
  article-title: Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 353
  year: 1986
  end-page: 355
  ident: b0020
  article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer
  publication-title: Appl. Phys. Lett.
– volume: 49
  start-page: 1678
  year: 2005
  end-page: 1682
  ident: b0160
  article-title: A modified transferred-electron high-field mobility model for GaN devices simulation
  publication-title: Solid-State Electron.
– volume: 132
  start-page: 177
  year: 2018
  end-page: 189
  ident: b0015
  article-title: Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review
  publication-title: Water Res.
– year: 2016
  ident: b0005
  article-title: III-Nitride ultraviolet emitters
– volume: 117
  year: 2020
  ident: b0090
  article-title: High internal quantum efficiency and optically pumped stimulated emission in AlGaN-based UV-C multiple quantum wells
  publication-title: Appl. Phys. Lett.
– year: 2021
  ident: b0035
  article-title: Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application
  publication-title: Jpn. J. Appl. Phys.
– volume: 13
  year: 2020
  ident: b0110
  article-title: Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping
  publication-title: Appl. Phys. Express
– volume: 10
  start-page: 10285
  year: 2020
  ident: b0025
  article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
  publication-title: Sci. Rep.
– volume: 2012
  year: 2012
  ident: b0055
  article-title: High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone
  publication-title: J. Environ. Prot.
– volume: 40
  start-page: 122802
  year: 2019
  ident: b0155
  article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate
  publication-title: J. Semicond.
– volume: 56
  year: 2019
  ident: b0010
  article-title: Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications
  publication-title: Innov. Food Sci. Emerg. Technol.
– volume: 2
  start-page: 1892
  year: 2020
  end-page: 1907
  ident: b0065
  article-title: External Quantum Efficiency of 6.5% at 300 nm Emission and 4.7% at 310 nm Emission on Bare Wafer of AlGaN-Based UVB LEDs
  publication-title: ACS Appl. Electron. Mater.
– volume: 145
  year: 2020
  ident: b0150
  article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide
  publication-title: Superlattices Microstruct.
– volume: 2
  start-page: 77
  year: 2008
  end-page: 84
  ident: b0050
  article-title: Ultraviolet light-emitting diodes based on group three nitrides
  publication-title: Nat. Photonics
– volume: 35
  year: 2020
  ident: b0080
  article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes
  publication-title: Semicond. Sci. Technol.
– volume: 48
  start-page: 1273
  year: 2020
  end-page: 1275
  ident: b0030
  article-title: Susceptibility of SARS-CoV-2 to UV irradiation
  publication-title: Am. J. Infect. Control
– volume: 3
  issue: 5
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0075
  article-title: Oxygen and silicon point defects in Al 0.65 Ga 0.35 N
  publication-title: Phys. Rev. Mater.
– year: 2013
  ident: 10.1016/j.optlastec.2022.108156_b0125
– volume: 128
  issue: 10
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0060
  article-title: Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0015554
– volume: vol. 1
  year: 1978
  ident: 10.1016/j.optlastec.2022.108156_b0105
– volume: 158
  year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0135
  article-title: p-AlInN electron blocking layer for AlGaN-based deep-ultraviolet light-emitting diode
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2021.107022
– volume: 56
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0010
  article-title: Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications
  publication-title: Innov. Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2019.04.006
– volume: 7
  start-page: 284
  year: 1973
  ident: 10.1016/j.optlastec.2022.108156_b0170
  article-title: Optical gain in semiconductors
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(73)90072-0
– volume: 48
  start-page: 353
  issue: 5
  year: 1986
  ident: 10.1016/j.optlastec.2022.108156_b0020
  article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96549
– volume: 2012
  year: 2012
  ident: 10.1016/j.optlastec.2022.108156_b0055
  article-title: High-sensitivity ozone sensing using 280 nm deep ultraviolet light-emitting diode for detection of natural hazard ozone
  publication-title: J. Environ. Prot.
– volume: 80
  start-page: 1204
  issue: 7
  year: 2002
  ident: 10.1016/j.optlastec.2022.108156_b0145
  article-title: Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1448668
– volume: 216
  start-page: 1800815
  issue: 4
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0040
  article-title: Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes
  publication-title: Physica Status Solidi (A)
  doi: 10.1002/pssa.201800815
– volume: 13
  issue: 4
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0115
  article-title: Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ab7caf
– volume: 145
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0150
  article-title: Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2020.106643
– volume: 132
  start-page: 177
  year: 2018
  ident: 10.1016/j.optlastec.2022.108156_b0015
  article-title: Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.079
– volume: 42
  start-page: 852
  issue: 7
  year: 2008
  ident: 10.1016/j.optlastec.2022.108156_b0165
  article-title: Optical confinement in laser diodes based on nitrides of Group III elements. Part 2: Analysis of heterostructures on various substrates
  publication-title: Semiconductors
  doi: 10.1134/S1063782608070166
– volume: 12
  issue: 12
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0095
  article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab50e0
– volume: 118
  issue: 16
  year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0120
  article-title: AlGaN-based UV-B laser diode with a high optical confinement factor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0046224
– year: 2016
  ident: 10.1016/j.optlastec.2022.108156_b0005
– volume: 35
  issue: 7
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0080
  article-title: Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab8c2a
– volume: 2
  start-page: 1892
  issue: 7
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0065
  article-title: External Quantum Efficiency of 6.5% at 300 nm Emission and 4.7% at 310 nm Emission on Bare Wafer of AlGaN-Based UVB LEDs
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00172
– volume: 36
  issue: 5
  year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0130
  article-title: The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/abeff6
– volume: 2
  start-page: 77
  issue: 2
  year: 2008
  ident: 10.1016/j.optlastec.2022.108156_b0050
  article-title: Ultraviolet light-emitting diodes based on group three nitrides
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.293
– volume: 13
  issue: 7
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0110
  article-title: Internal loss of AlGaN-based ultraviolet-B band laser diodes with p-type AlGaN cladding layer using polarization doping
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ab9e4a
– volume: 49
  start-page: 1678
  issue: 10
  year: 2005
  ident: 10.1016/j.optlastec.2022.108156_b0160
  article-title: A modified transferred-electron high-field mobility model for GaN devices simulation
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2005.09.002
– volume: 252
  start-page: 900
  issue: 5
  year: 2015
  ident: 10.1016/j.optlastec.2022.108156_b0070
  article-title: First-principles theory of acceptors in nitride semiconductors
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.201552062
– volume: 117
  issue: 15
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0100
  article-title: Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0027789
– volume: 12
  start-page: 2591
  year: 2022
  ident: 10.1016/j.optlastec.2022.108156_b0185
  article-title: Achieving 9.6% efficiency in 304 nm p-AlGaN UVB LED via increasing the holes injection and light reflectance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-04876-x
– year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0045
  article-title: Suppressing the efficiency droop in the AlGaN-based UVB LED
  publication-title: Nanotechnology
– year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0140
  article-title: Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer
  publication-title: Nanotechnology
– volume: 10
  issue: 6
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0085
  article-title: Improving hole injection from p-EBL down to the end of active region by simply playing with polarization effect for AlGaN based DUV light-emitting diodes
  publication-title: AIP Adv.
  doi: 10.1063/5.0007460
– volume: 10
  start-page: 10285
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0025
  article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67211-2
– year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0035
  article-title: Efficiency improvement of AlGaN-based deep-ultraviolet light-emitting diodes and their virus inactivation application
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ac10f2
– volume: 60
  year: 2021
  ident: 10.1016/j.optlastec.2022.108156_b0180
  article-title: Evaluation of internal quantum efficiency and stimulated emission characteristics in AlGaN-based multiple quantum wells
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ac3025
– volume: 27
  start-page: A620
  issue: 12
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0175
  article-title: On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer
  publication-title: Opt. Express
  doi: 10.1364/OE.27.00A620
– volume: 48
  start-page: 1273
  issue: 10
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0030
  article-title: Susceptibility of SARS-CoV-2 to UV irradiation
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2020.07.031
– volume: 40
  start-page: 122802
  issue: 12
  year: 2019
  ident: 10.1016/j.optlastec.2022.108156_b0155
  article-title: A contrivance of 277 nm DUV LD with B0. 313Ga0. 687N/B0. 40Ga0. 60N QWs and Al x Ga1–x N heterojunction grown on AlN substrate
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/40/12/122802
– volume: 117
  issue: 16
  year: 2020
  ident: 10.1016/j.optlastec.2022.108156_b0090
  article-title: High internal quantum efficiency and optically pumped stimulated emission in AlGaN-based UV-C multiple quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0027697
SSID ssj0004653
Score 2.4629855
Snippet •Compositional grading of AlGaN layers is used to increase the optical confinement factor (OCF), and gain of DUV LD.•Compositional grading of waveguides (WGs),...
Achieving high threshold current density and high optical confinement are big challenges in the realization of high-performance aluminum gallium nitride...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108156
SubjectTerms Aluminum gallium nitrides
Carrier injection
Cladding layer
Compositional grading of AlGaN
Confinement
Current density
Deep-ultraviolet laser diode
Performance enhancement
Semiconductor lasers
Silicon
Threshold currents
Ultraviolet lasers
Waveguide layer
Waveguides
Title Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers
URI https://dx.doi.org/10.1016/j.optlastec.2022.108156
https://www.proquest.com/docview/2674431853
Volume 152
WOSCitedRecordID wos000793297500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004653
  issn: 0030-3992
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKBxIcEAwQg4F84FalamrXsblVMGDAypAG6i1yY2dtyS-16Rj8M_yr2I6dpmWo7MAlrSL5Je77-vL88r3PALzQO0vHCDMv1mq3euNtjyEuvQlnvZjHccRNl-vXj8FoRMdjdtpq_XK9MBdJkGX08pIV_9XV6pxytm6dvYa7a6PqhPqunK6Oyu3q-E-OP220Ashsqj_dC_9h8paPOkLKwlsl5YKbt_JlRyXQep_wWS5kZ-W6cB2bS7sw8c4XhmtvWlxmnsgLlacm_Ielz7vs9lNRiz5XNss_CvdaIHpmhCBPVlOeplyoAP-d_6yBN0_VFT9Mq7rsSbdR8De8g8885TWf-LVMZwZxx8k3SwayBQy19nX0uTooI_UoYGwzKFe6tjas-j0tanNlxK-KD_NuXpRqZmpaXX2N7nrEpsb21rOvZiQ6sts8rA2F2lBYGboB9vrBgNE22BseH43fN1pvrdCpncMGhfDKe_pbArSVCpj85uweuGsXJnBYAeo-aMlsH9xpyFXug1uGLhwtH4C8ATLYABnMY2hABrdBBg0goAEZNCCDGyCDa5BpIw5ksALZQ_DlzdHZq3ee3brDixBGpSdQLCb-hPqEUbUE92UgCGNyQJGUTGBEowFXyX5fxhwHRPaooBgzLhAmWBDqo0egneWZfAyg35dsgHo4joTAnPQniE-imHBJCReYyANA3O8ZRlbXXm-vkoQ7fHoAevXAopJ22T3kpXNYaDPUKvMMFRx3Dz50Lg5tvFiGfRJgrBUM0JPr385TcHv9hzoE7XKxks_AzeiinC0Xzy1UfwN4E8Sc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+AlGaN+deep-ultraviolet+laser+diode+using+compositional+Al-grading+of+Si-doped+layers&rft.jtitle=Optics+and+laser+technology&rft.au=Sharif%2C+Muhammad+Nawaz&rft.au=Ajmal+Khan%2C+M.&rft.au=Wali%2C+Qamar&rft.au=Demir%2C+Ilkay&rft.date=2022-08-01&rft.issn=0030-3992&rft.volume=152&rft.spage=108156&rft_id=info:doi/10.1016%2Fj.optlastec.2022.108156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2022_108156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon