First-order and second-order optimality conditions for nonsmooth constrained problems via convolution smoothing
This article mainly concerns deriving first-order and second-order necessary (and partly sufficient) optimality conditions for a general class of constrained optimization problems via smoothing regularization procedures based on infimal-like convolutions/envelopes. In this way, we obtain first-order...
Uložené v:
| Vydané v: | Optimization Ročník 60; číslo 1-2; s. 253 - 275 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis Group
01.01.2011
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article mainly concerns deriving first-order and second-order necessary (and partly sufficient) optimality conditions for a general class of constrained optimization problems via smoothing regularization procedures based on infimal-like convolutions/envelopes. In this way, we obtain first-order optimality conditions of both lower subdifferential and upper subdifferential types and then second-order conditions of three kinds involving, respectively, generalized second-order directional derivatives, graphical derivatives of first-order subdifferentials and second-order subdifferentials defined via coderivatives of first-order constructions. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2010.522713 |