Resultant over the residual of a complete intersection

In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra Jg. 164; H. 1; S. 35 - 57
Hauptverfasser: Busé, L., Elkadi, M., Mourrain, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 24.10.2001
Elsevier
Schriftenreihe:Effective methods in algebraic geometry (Bath, 2000)
Schlagworte:
ISSN:0022-4049, 1873-1376
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal (F : G) and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples.
AbstractList In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal (F : G) and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples.
In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal (F:G) and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples.
Author Busé, L.
Elkadi, M.
Mourrain, B.
Author_xml – sequence: 1
  givenname: L.
  surname: Busé
  fullname: Busé, L.
  email: lbuse@math.unice.fr
  organization: UNSA, UMR 6621, Parc Valrose, BP 71, 06108 Nice Cedex 02, France
– sequence: 2
  givenname: M.
  surname: Elkadi
  fullname: Elkadi, M.
  email: elkadi@math.unice.fr
  organization: UNSA, UMR 6621, Parc Valrose, BP 71, 06108 Nice Cedex 02, France
– sequence: 3
  givenname: B.
  surname: Mourrain
  fullname: Mourrain, B.
  email: mourrain@sophia.inria.fr
  organization: SAGA, INRIA, BP 93, 06902 Sophia Antipolis, France
BackLink https://inria.hal.science/inria-00099487$$DView record in HAL
BookMark eNqFkE1LAzEQhoNUsK3-BGGPiqwmmzS7wYOU4hcUBO09zGZnaWS7KUla8N-bturBS09zeZ93Zp4RGfSuR0IuGb1llMm7D0qLIhdUqCtKryllQuTihAxZVfKc8VIOyPAvckZGIXzSlOJCDol8x7DpIvQxc1v0WVxi5jHYZgNd5toMMuNW6w4jZraP6AOaaF1_Tk5b6AJe_MwxWTw9LmYv-fzt-XU2neeGCx5zo1ojhAJRybpggKaqqRBC8qJGVZgKacOAsWbCAEoum0LJemLKopEJLxUfk5tD7RI6vfZ2Bf5LO7D6ZTrXtvcWdPpEKVGVW5bS94e08S4Ej602NsLu3OjBdppRvfOl9770Tkai9d6XFome_KN_Fx7jHg4cJg9bi14HY7E32FifZOnG2SMN31F1guU
CitedBy_id crossref_primary_10_1016_j_jsc_2004_11_010
crossref_primary_10_1016_j_cagd_2007_07_001
crossref_primary_10_1142_S0219498803000489
crossref_primary_10_1137_17M1162433
crossref_primary_10_1016_S0747_7171_03_00089_0
crossref_primary_10_1090_mcom_3548
Cites_doi 10.1112/plms/s1-35.1.3
10.1006/aima.1996.1609
10.1115/1.2836473
10.1006/jsco.1999.0304
10.1007/BF01389151
10.1016/0001-8708(91)90031-2
10.1006/jsco.1998.0266
10.1007/978-0-8176-4771-1
10.1016/0021-8693(90)90050-X
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2001 Elsevier Science B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/S0022-4049(00)00144-4
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1873-1376
EndPage 57
ExternalDocumentID oai:HAL:inria-00099487v1
10_1016_S0022_4049_00_00144_4
S0022404900001444
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WH7
WUQ
XJT
XPP
YQT
YYP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c343t-c9fc449a486b21aec8b0444632be92c8e0d1a11d51aa736d296b5c72d6343793
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000171099100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-4049
IngestDate Tue Oct 14 20:06:13 EDT 2025
Sat Nov 29 01:48:55 EST 2025
Tue Nov 18 22:22:00 EST 2025
Fri Feb 23 02:22:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 13F20
68W30
11C
13P
14Q
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c9fc449a486b21aec8b0444632be92c8e0d1a11d51aa736d296b5c72d6343793
ORCID 0009-0005-6528-7027
OpenAccessLink https://inria.hal.science/inria-00099487
PageCount 23
ParticipantIDs hal_primary_oai_HAL_inria_00099487v1
crossref_citationtrail_10_1016_S0022_4049_00_00144_4
crossref_primary_10_1016_S0022_4049_00_00144_4
elsevier_sciencedirect_doi_10_1016_S0022_4049_00_00144_4
PublicationCentury 2000
PublicationDate 2001-10-24
PublicationDateYYYYMMDD 2001-10-24
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-24
  day: 24
PublicationDecade 2000
PublicationSeriesTitle Effective methods in algebraic geometry (Bath, 2000)
PublicationTitle Journal of pure and applied algebra
PublicationYear 2001
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Canny, Emiris (BIB4) 1993; Vol. 673
Eisenbud (BIB9) 1994; Vol. 150
Jouanolou (BIB18) 1997; 126
Shafarevitch (BIB22) 1974
I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.
M. Chardin, B. Ulrich, Liaison and Castelnuovo–Mumford regularity, preprint, 2000.
Griffiths, Harris (BIB14) 1978
Hunecke, Ulrich (BIB16) 1998; 390
Raghavan, Roth (BIB21) 1995; 117
Hartshorne (BIB15) 1977
Emiris, Mourrain (BIB10) 1999; 28
Bayer, Stillman (BIB1) 1987; 1987
Cox, Little, O'Shea (BIB7) 1992
Cox (BIB8) 1995; 4
Jouanolou (BIB17) 1991; 90
Mourrain (BIB20) 1996; Vol. 143
Macaulay (BIB19) 1902; 1
M. Chardin, D. Eisenbud, B. Ulrich, Computing the Hilbert–Poincaré series of residual intersections, preprint, 2000.
B. Sturmfels, Sparse elimination theory, in: D. Eisenbud, L. Robbiano (Eds.), Proceedings of the Computat. Algebraic Geom. and Commut. Algebra 1991, Cortona, Italy, 1993, Cambridge University Press, Cambridge, pp. 264–298.
Bruns, Kustin, Miller (BIB2) 1990; 128
Busé, Elkadi, Mourrain (BIB3) 2000; 29
Fulton (BIB12) 1984
Faugeras (BIB11) 1993
Emiris (10.1016/S0022-4049(00)00144-4_BIB10) 1999; 28
10.1016/S0022-4049(00)00144-4_BIB6
Macaulay (10.1016/S0022-4049(00)00144-4_BIB19) 1902; 1
10.1016/S0022-4049(00)00144-4_BIB5
Cox (10.1016/S0022-4049(00)00144-4_BIB8) 1995; 4
10.1016/S0022-4049(00)00144-4_BIB23
Eisenbud (10.1016/S0022-4049(00)00144-4_BIB9) 1994; Vol. 150
10.1016/S0022-4049(00)00144-4_BIB13
Fulton (10.1016/S0022-4049(00)00144-4_BIB12) 1984
Jouanolou (10.1016/S0022-4049(00)00144-4_BIB17) 1991; 90
Shafarevitch (10.1016/S0022-4049(00)00144-4_BIB22) 1974
Mourrain (10.1016/S0022-4049(00)00144-4_BIB20) 1996; Vol. 143
Hartshorne (10.1016/S0022-4049(00)00144-4_BIB15) 1977
Cox (10.1016/S0022-4049(00)00144-4_BIB7) 1992
Griffiths (10.1016/S0022-4049(00)00144-4_BIB14) 1978
Hunecke (10.1016/S0022-4049(00)00144-4_BIB16) 1998; 390
Bayer (10.1016/S0022-4049(00)00144-4_BIB1) 1987; 1987
Bruns (10.1016/S0022-4049(00)00144-4_BIB2) 1990; 128
Faugeras (10.1016/S0022-4049(00)00144-4_BIB11) 1993
Jouanolou (10.1016/S0022-4049(00)00144-4_BIB18) 1997; 126
Busé (10.1016/S0022-4049(00)00144-4_BIB3) 2000; 29
Raghavan (10.1016/S0022-4049(00)00144-4_BIB21) 1995; 117
Canny (10.1016/S0022-4049(00)00144-4_BIB4) 1993; Vol. 673
References_xml – volume: 29
  start-page: 515
  year: 2000
  end-page: 526
  ident: BIB3
  article-title: Generalized resultant over unirational algebraic varieties
  publication-title: J. Symbolic Comput.
– volume: 4
  start-page: 17
  year: 1995
  end-page: 50
  ident: BIB8
  article-title: The homogeneous coordinate ring of a toric variety
  publication-title: J. Algebraic Geom.
– volume: Vol. 150
  year: 1994
  ident: BIB9
  publication-title: Commutative Algebra with a View Toward Algebraic Geometry
– year: 1974
  ident: BIB22
  publication-title: Basic Algebraic Geometry
– volume: 28
  start-page: 3
  year: 1999
  end-page: 44
  ident: BIB10
  article-title: Matrices in elimination theory
  publication-title: J. Symbolic Comput.
– volume: 390
  start-page: 1
  year: 1998
  end-page: 20
  ident: BIB16
  article-title: Residual intersections
  publication-title: J. Reine Angew. Math.
– volume: 126
  start-page: 119
  year: 1997
  end-page: 250
  ident: BIB18
  article-title: Formes d'inertie et résultant: un formulaire
  publication-title: Adv. in Math.
– reference: M. Chardin, B. Ulrich, Liaison and Castelnuovo–Mumford regularity, preprint, 2000.
– volume: 1
  start-page: 3
  year: 1902
  end-page: 27
  ident: BIB19
  article-title: Some formulae in elimination
  publication-title: Proc. London Math. Soc.
– volume: 128
  start-page: 214
  year: 1990
  end-page: 239
  ident: BIB2
  article-title: The resolution of the generic residual intersection of a complete intersection
  publication-title: J. Algebra
– reference: I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.
– year: 1992
  ident: BIB7
  publication-title: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
– volume: 117
  start-page: 71
  year: 1995
  end-page: 79
  ident: BIB21
  article-title: Solving polynomial systems for the kinematic analysis of mechanisms and robot manipulators
  publication-title: ASME J. Mech. Des.
– volume: 90
  start-page: 117
  year: 1991
  end-page: 263
  ident: BIB17
  article-title: Le formalisme du résultant
  publication-title: Adv. in Math.
– volume: 1987
  start-page: 1
  year: 1987
  end-page: 11
  ident: BIB1
  article-title: A criterion for detecting
  publication-title: Invent. Math.
– volume: Vol. 143
  start-page: 285
  year: 1996
  end-page: 306
  ident: BIB20
  article-title: Enumeration problems in geometry, robotics and vision
  publication-title: Algorithms in Algebraic Geometry and Applications
– year: 1984
  ident: BIB12
  publication-title: Intersection Theory
– year: 1978
  ident: BIB14
  publication-title: Principles of Algebraic Geometry
– year: 1977
  ident: BIB15
  publication-title: Algebraic Geometry
– volume: Vol. 673
  start-page: 89
  year: 1993
  end-page: 104
  ident: BIB4
  article-title: An efficient algorithm for the sparse mixed resultant
  publication-title: Proceedings of the International Symposia on Applied Algebra, Algebraic Algorithms and Error-Correction Codes, Puerto Rico
– year: 1993
  ident: BIB11
  publication-title: Three-Dimensional Computer Vision: a Geometric Viewpoint
– reference: M. Chardin, D. Eisenbud, B. Ulrich, Computing the Hilbert–Poincaré series of residual intersections, preprint, 2000.
– reference: B. Sturmfels, Sparse elimination theory, in: D. Eisenbud, L. Robbiano (Eds.), Proceedings of the Computat. Algebraic Geom. and Commut. Algebra 1991, Cortona, Italy, 1993, Cambridge University Press, Cambridge, pp. 264–298.
– year: 1984
  ident: 10.1016/S0022-4049(00)00144-4_BIB12
– volume: Vol. 150
  year: 1994
  ident: 10.1016/S0022-4049(00)00144-4_BIB9
– volume: 1
  start-page: 3
  issue: 33
  year: 1902
  ident: 10.1016/S0022-4049(00)00144-4_BIB19
  article-title: Some formulae in elimination
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s1-35.1.3
– volume: 126
  start-page: 119
  issue: 2
  year: 1997
  ident: 10.1016/S0022-4049(00)00144-4_BIB18
  article-title: Formes d'inertie et résultant: un formulaire
  publication-title: Adv. in Math.
  doi: 10.1006/aima.1996.1609
– volume: 117
  start-page: 71
  issue: 2
  year: 1995
  ident: 10.1016/S0022-4049(00)00144-4_BIB21
  article-title: Solving polynomial systems for the kinematic analysis of mechanisms and robot manipulators
  publication-title: ASME J. Mech. Des.
  doi: 10.1115/1.2836473
– volume: Vol. 673
  start-page: 89
  year: 1993
  ident: 10.1016/S0022-4049(00)00144-4_BIB4
  article-title: An efficient algorithm for the sparse mixed resultant
– volume: Vol. 143
  start-page: 285
  year: 1996
  ident: 10.1016/S0022-4049(00)00144-4_BIB20
  article-title: Enumeration problems in geometry, robotics and vision
– year: 1974
  ident: 10.1016/S0022-4049(00)00144-4_BIB22
– volume: 29
  start-page: 515
  year: 2000
  ident: 10.1016/S0022-4049(00)00144-4_BIB3
  article-title: Generalized resultant over unirational algebraic varieties
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1999.0304
– volume: 1987
  start-page: 1
  year: 1987
  ident: 10.1016/S0022-4049(00)00144-4_BIB1
  article-title: A criterion for detecting m-regularity
  publication-title: Invent. Math.
  doi: 10.1007/BF01389151
– ident: 10.1016/S0022-4049(00)00144-4_BIB23
– volume: 4
  start-page: 17
  issue: 1
  year: 1995
  ident: 10.1016/S0022-4049(00)00144-4_BIB8
  article-title: The homogeneous coordinate ring of a toric variety
  publication-title: J. Algebraic Geom.
– volume: 90
  start-page: 117
  issue: 2
  year: 1991
  ident: 10.1016/S0022-4049(00)00144-4_BIB17
  article-title: Le formalisme du résultant
  publication-title: Adv. in Math.
  doi: 10.1016/0001-8708(91)90031-2
– year: 1993
  ident: 10.1016/S0022-4049(00)00144-4_BIB11
– year: 1978
  ident: 10.1016/S0022-4049(00)00144-4_BIB14
– volume: 28
  start-page: 3
  issue: 1& 2
  year: 1999
  ident: 10.1016/S0022-4049(00)00144-4_BIB10
  article-title: Matrices in elimination theory
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1998.0266
– ident: 10.1016/S0022-4049(00)00144-4_BIB13
  doi: 10.1007/978-0-8176-4771-1
– volume: 128
  start-page: 214
  year: 1990
  ident: 10.1016/S0022-4049(00)00144-4_BIB2
  article-title: The resolution of the generic residual intersection of a complete intersection
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(90)90050-X
– ident: 10.1016/S0022-4049(00)00144-4_BIB5
– volume: 390
  start-page: 1
  year: 1998
  ident: 10.1016/S0022-4049(00)00144-4_BIB16
  article-title: Residual intersections
  publication-title: J. Reine Angew. Math.
– ident: 10.1016/S0022-4049(00)00144-4_BIB6
– year: 1992
  ident: 10.1016/S0022-4049(00)00144-4_BIB7
– year: 1977
  ident: 10.1016/S0022-4049(00)00144-4_BIB15
SSID ssj0001346
Score 1.6807009
Snippet In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual...
In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algebraic Geometry
Commutative Algebra
Computer Science
Mathematics
Symbolic Computation
Title Resultant over the residual of a complete intersection
URI https://dx.doi.org/10.1016/S0022-4049(00)00144-4
https://inria.hal.science/inria-00099487
Volume 164
WOSCitedRecordID wos000171099100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1376
  dateEnd: 20130228
  omitProxy: false
  ssIdentifier: ssj0001346
  issn: 0022-4049
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywEOiKcoL_nQAwhliWMnto8rVFQQWyHYw94sx3FE1SpdbXar_nzGjzhbUCk9cIkiR55YmYn9jT3zDUIHNK9J2RKacQD4GeNGZpJbkgHapVy3wpha-GIT_PhYLBbyWzxo7305Ad514vJSLv-rqqENlO1SZ2-h7iQUGuAelA5XUDtc_0nx322_OXO1gd-76MwQQmj7kHMVkiFdFDlgZU8Vsep9LFZ3DUhdDucLOqJVVxakXo1e_KYPR-3ev5-MkSCnuvFxArPUNnO7jTqWh59c2W3w4W4hyXkr-p_lgWY0zaAV2zaVmM8YZsRARhLX1sBF_cesHTYQfiTZgK1diWrp_DcWk4CuMGX_toKluMIxZA1EKSdK5Y7-FMQotoP2Cl5KmL33pp8PF1_Sgk1oyOcaXj8men0Yx_Q2z9_F8VwHYXZ-DpvxHpzMH6IHUWF4GqzhEbpju8fo_ixR8vZPUJXsAju7wPAID3aBz1us8WAXeNsunqL5p8P5x6MsFs3IDGV0nRnZGsakZqKqC6KtEbWjBKxoUVtZGGHzhmhCmpJozWnVFLKqS8OLpqKOmpI-Q7vdeWefI2ykqGljRcE0Adhe1sQ2goJ83TDdmnwfseEzKBMJ5V1dkzP1VzXso0nqtgyMKjd1EMM3VhEWBrinwH5u6noAOkmvcVTqR9Ov6qSDv1157wj89Qvy4rZDeonujT_HK7S7Xm3sa3TXXKxP-tWbaF-_AGsnhDI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resultant+over+the+residual+of+a+complete+intersection&rft.jtitle=Journal+of+pure+and+applied+algebra&rft.au=Bus%C3%A9%2C+L.&rft.au=Elkadi%2C+M.&rft.au=Mourrain%2C+B.&rft.date=2001-10-24&rft.issn=0022-4049&rft.volume=164&rft.issue=1-2&rft.spage=35&rft.epage=57&rft_id=info:doi/10.1016%2FS0022-4049%2800%2900144-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0022_4049_00_00144_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4049&client=summon