Resultant over the residual of a complete intersection

In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of pure and applied algebra Ročník 164; číslo 1; s. 35 - 57
Hlavní autoři: Busé, L., Elkadi, M., Mourrain, B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 24.10.2001
Elsevier
Edice:Effective methods in algebraic geometry (Bath, 2000)
Témata:
ISSN:0022-4049, 1873-1376
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal (F : G) and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples.
ISSN:0022-4049
1873-1376
DOI:10.1016/S0022-4049(00)00144-4