Resultant over the residual of a complete intersection
In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system F to have a solution in the residual of a variety, defined here by a complete intersection G. We show that it corresponds to an irreducible divisor and give an explicit formula fo...
Uloženo v:
| Vydáno v: | Journal of pure and applied algebra Ročník 164; číslo 1; s. 35 - 57 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
24.10.2001
Elsevier |
| Edice: | Effective methods in algebraic geometry (Bath, 2000) |
| Témata: | |
| ISSN: | 0022-4049, 1873-1376 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we study the residual resultant which is the necessary and sufficient condition for a polynomial system
F to have a solution in the residual of a variety, defined here by a complete intersection
G. We show that it corresponds to an irreducible divisor and give an explicit formula for its degree in the coefficients of each polynomial. Using the resolution of the ideal
(F
:
G)
and computing its regularity, we give a method for computing the residual resultant using a matrix which involves a Macaulay and a Bezout part. In particular, we show that this resultant is the gcd of all the maximal minors of this matrix. We illustrate our approach for the residual of points and end by some explicit examples. |
|---|---|
| ISSN: | 0022-4049 1873-1376 |
| DOI: | 10.1016/S0022-4049(00)00144-4 |