An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits

In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica Jg. 188; S. 518 - 530
Hauptverfasser: Vutukuri, Srianish, Padhi, Radhakant
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elmsford Elsevier Ltd 01.11.2021
Elsevier BV
Schlagworte:
ISSN:0094-5765, 1879-2030
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission. •Impulsive MPSP guidance is proposed for station keeping on quasi-halo orbits.•This computational guidance ensures control energy minimization.•It exhibits rapid convergence and demands minimal computational time.•Robustness analysis shows it can effectively handle disturbances and uncertainties.•Spacecraft trajectories are tightly bound to the reference orbit during the entire mission.
AbstractList In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission.
In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission. •Impulsive MPSP guidance is proposed for station keeping on quasi-halo orbits.•This computational guidance ensures control energy minimization.•It exhibits rapid convergence and demands minimal computational time.•Robustness analysis shows it can effectively handle disturbances and uncertainties.•Spacecraft trajectories are tightly bound to the reference orbit during the entire mission.
Author Vutukuri, Srianish
Padhi, Radhakant
Author_xml – sequence: 1
  givenname: Srianish
  orcidid: 0000-0003-0269-8740
  surname: Vutukuri
  fullname: Vutukuri, Srianish
  email: srianishv@iisc.ac.in
– sequence: 2
  givenname: Radhakant
  orcidid: 0000-0003-2406-4917
  surname: Padhi
  fullname: Padhi, Radhakant
  email: padhi@iisc.ac.in
BookMark eNqNkEtr4zAUhUVJoUmmv6GGWduV5Me1Fl2EMo9CoJvOWshXUqqMbaWSHJh_Pw4euphNu7pw7jn38W3IavSjIeSO0YJR1twfC4VJqZiCLzjlrKBQ0IpdkTVrQeSclnRF1pSKKq-hqW_IJsYjpRR4K9bE7MbMDaepj-5sssFr02enYLTDdBFiUsnhrPhDUMPgxkPWqWj00vBj_tuY00U9TE6rEU1mfcjeJhVd_qp6n_nQuRS_kGur-mhu_9Ut-fX928vjz3z__OPpcbfPsazKlLcoKisstIBY6xIsNigslpp1wFrbdqzTjCMXDTRNWwIHwUVpsWZKAFZVuSVfl7nzwW-TiUke_RTGeaXkdVsBQM1gdj0sLgw-xmCsRLe8k4JyvWRUXsjKo3wnKy9kJQU5k53z8F_-FNygwp9PJHdL0swQzs4EGdGZGZt2wWCS2rsPZ_wFF5-coQ
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_05_002
crossref_primary_10_1016_j_ifacsc_2024_100282
crossref_primary_10_1109_MCS_2024_3358624
crossref_primary_10_1016_j_asr_2022_11_033
crossref_primary_10_1109_TAES_2024_3524197
crossref_primary_10_1016_j_asr_2025_05_074
crossref_primary_10_1109_JRFID_2023_3284670
crossref_primary_10_1007_s40295_023_00427_2
Cites_doi 10.1016/j.asr.2009.10.023
10.2514/1.G001850
10.1016/0094-5765(87)90175-5
10.1142/S230138501950002X
10.2514/1.28738
10.2514/1.G003115
10.2514/1.53647
10.2514/6.2012-4665
10.3182/20140313-3-IN-3024.00172
10.1016/j.actaastro.2013.01.022
10.1016/j.actaastro.2018.02.004
10.1016/j.asr.2013.09.021
10.2514/1.G003990
10.2514/1.G002845
10.2514/3.11440
ContentType Journal Article
Copyright 2021 IAA
Copyright Elsevier BV Nov 2021
Copyright_xml – notice: 2021 IAA
– notice: Copyright Elsevier BV Nov 2021
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2021.07.041
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 530
ExternalDocumentID 10_1016_j_actaastro_2021_07_041
S0094576521003994
GrantInformation_xml – fundername: Space Technology Cell at the Indian Institute of Science, Bangalore, India
  grantid: ISTC-19-0004
  funderid: http://dx.doi.org/10.13039/100007780
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-8c94f9f787cc5d37fc6c9fc3d1b718f8b1bd12c296766837279293fc51a97c443
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693831100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Wed Aug 13 09:50:02 EDT 2025
Sat Nov 29 07:25:19 EST 2025
Tue Nov 18 21:59:29 EST 2025
Fri Feb 23 02:43:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Circular restricted three body problem
Elliptic four body problem
Quasi-halo orbits
Station-keeping
Model predictive static programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-8c94f9f787cc5d37fc6c9fc3d1b718f8b1bd12c296766837279293fc51a97c443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0269-8740
0000-0003-2406-4917
PQID 2584777517
PQPubID 2045287
PageCount 13
ParticipantIDs proquest_journals_2584777517
crossref_citationtrail_10_1016_j_actaastro_2021_07_041
crossref_primary_10_1016_j_actaastro_2021_07_041
elsevier_sciencedirect_doi_10_1016_j_actaastro_2021_07_041
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lovelly, George (b30) 2017; 14
Folta, Pavlak, Haapala, Howell, Woodard (b14) 2014; 94
Padhi, Kothari (b23) 2009; 5
G. Gómez, J. Llibre, R. Martınez, C. Simó, Station keeping of a quasiperiodic halo orbit using invariant manifolds, in: Proceed. 2nd Internat. Symp. on Spacecraft Flight Dynamics, Darmstadt, 1986, pp. 65–70.
Grebow, Ozimek, Howell, Folta (b15) 2008; 45
Jung, Kim (b5) 2019; 42
A. Farrés, G. Gómez, J. Masdemont, C. Webster, D. Folta, The geometry of stationkeeping strategies around libration point orbits, in: 70th International Astronautical Congress, Washington DC, 1986.
El’yasberg, Timokhova (b9) 1986; 24
Sakode, Padhi (b22) 2014; 47
Gómez, Howell, Masdemont, Simó (b33) 1998; 99
Akiyama, Bando, Hokamoto (b3) 2018; 41
Gómez (b28) 2001
Kogan (b10) 1992; 30
Akiyama, Bando, Hokamoto (b4) 2018; 153
Muralidharan (b20) 2017
T. Pavlak, K. Howell, Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system, in: AIAA/AAS Astrodynamics Specialist Conference Paper, AIAA 2012 - 4665.
Ilyin (b8) 2015
Narula, Biggs (b2) 2018; 41
Howell, Keeter (b18) 1995
Vutukuri (b27) 2018
Shirobokov, Trofimov, Ovchinnikov (b1) 2017; 40
Molnar (b19) 2020
Sachan, Padhi (b32) 2019; 7
Lidov, Lyakhova (b7) 1992; 30
Simó, Gómez, Llibre, Martinez, Rodriguez (b11) 1987; 15
Banerjee, Padhi (b31) 2020
(b25) 2021
Turner (b29) 2008
Ghorbani, Assadian (b17) 2013; 52
Assadian, Pourtakdoust (b26) 2010; 45
Lidov, Lukianov (b6) 1977; 14
Oza, Padhi (b24) 2012; 35
Subudhi, Vutukuri, Padhi (b21) 2020
Howell, Pernicka (b16) 1993; 16
Lovelly (10.1016/j.actaastro.2021.07.041_b30) 2017; 14
Muralidharan (10.1016/j.actaastro.2021.07.041_b20) 2017
Lidov (10.1016/j.actaastro.2021.07.041_b7) 1992; 30
Gómez (10.1016/j.actaastro.2021.07.041_b33) 1998; 99
Ghorbani (10.1016/j.actaastro.2021.07.041_b17) 2013; 52
El’yasberg (10.1016/j.actaastro.2021.07.041_b9) 1986; 24
(10.1016/j.actaastro.2021.07.041_b25) 2021
Vutukuri (10.1016/j.actaastro.2021.07.041_b27) 2018
Gómez (10.1016/j.actaastro.2021.07.041_b28) 2001
10.1016/j.actaastro.2021.07.041_b13
Padhi (10.1016/j.actaastro.2021.07.041_b23) 2009; 5
10.1016/j.actaastro.2021.07.041_b12
10.1016/j.actaastro.2021.07.041_b34
Shirobokov (10.1016/j.actaastro.2021.07.041_b1) 2017; 40
Lidov (10.1016/j.actaastro.2021.07.041_b6) 1977; 14
Howell (10.1016/j.actaastro.2021.07.041_b18) 1995
Howell (10.1016/j.actaastro.2021.07.041_b16) 1993; 16
Banerjee (10.1016/j.actaastro.2021.07.041_b31) 2020
Oza (10.1016/j.actaastro.2021.07.041_b24) 2012; 35
Kogan (10.1016/j.actaastro.2021.07.041_b10) 1992; 30
Sakode (10.1016/j.actaastro.2021.07.041_b22) 2014; 47
Grebow (10.1016/j.actaastro.2021.07.041_b15) 2008; 45
Narula (10.1016/j.actaastro.2021.07.041_b2) 2018; 41
Ilyin (10.1016/j.actaastro.2021.07.041_b8) 2015
Simó (10.1016/j.actaastro.2021.07.041_b11) 1987; 15
Subudhi (10.1016/j.actaastro.2021.07.041_b21) 2020
Folta (10.1016/j.actaastro.2021.07.041_b14) 2014; 94
Turner (10.1016/j.actaastro.2021.07.041_b29) 2008
Assadian (10.1016/j.actaastro.2021.07.041_b26) 2010; 45
Sachan (10.1016/j.actaastro.2021.07.041_b32) 2019; 7
Akiyama (10.1016/j.actaastro.2021.07.041_b4) 2018; 153
Akiyama (10.1016/j.actaastro.2021.07.041_b3) 2018; 41
Jung (10.1016/j.actaastro.2021.07.041_b5) 2019; 42
Molnar (10.1016/j.actaastro.2021.07.041_b19) 2020
References_xml – volume: 14
  start-page: 922
  year: 1977
  end-page: 935
  ident: b6
  article-title: Statistical estimates in the control problem for motion of a space vehicle in the vicinity of a collinear libration point
  publication-title: Cosm. Res.
– volume: 45
  start-page: 344
  year: 2008
  end-page: 358
  ident: b15
  article-title: Multibody orbit architectures for lunar south pole coverage
  publication-title: J. Spacecr. Rockets
– year: 2017
  ident: b20
  article-title: Orbit maintenance strategies for Sun-Earth/Moon libration point missions: Parameter selection for target point and Cauchy-Green tensor approaches
– volume: 99
  start-page: 949
  year: 1998
  end-page: 967
  ident: b33
  article-title: Station-keeping strategies for translunar libration point orbits
  publication-title: Adv. Astronaut. Sci.
– volume: 153
  start-page: 289
  year: 2018
  end-page: 296
  ident: b4
  article-title: Station-keeping and formation flying based on nonlinear output regulation theory
  publication-title: Acta Astronaut.
– volume: 41
  start-page: 1407
  year: 2018
  end-page: 1415
  ident: b3
  article-title: Explicit form of station-keeping and formation flying controller for libration point orbits
  publication-title: J. Guid. Control Dyn.
– volume: 14
  start-page: 184
  year: 2017
  end-page: 197
  ident: b30
  article-title: Comparative analysis of present and future space-grade processors with device metrics
  publication-title: J. Aerosp. Inf. Syst.
– volume: 24
  start-page: 497
  year: 1986
  end-page: 512
  ident: b9
  article-title: Control of spacecraft motion in neighborhood of collinear libration center in restricted elliptical three-body problem
  publication-title: Kosmicheskie Issledovaniya
– volume: 35
  start-page: 153
  year: 2012
  end-page: 164
  ident: b24
  article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles
  publication-title: J. Guid. Control Dyn.
– volume: 30
  start-page: 712
  year: 1992
  end-page: 714
  ident: b10
  article-title: An optimal program of impulse corrections of unstable periodic orbits
  publication-title: Kosmicheskie Issledovaniya
– volume: 40
  start-page: 1085
  year: 2017
  end-page: 1105
  ident: b1
  article-title: Survey of station-keeping techniques for libration point orbits
  publication-title: J. Guid. Control Dyn.
– reference: G. Gómez, J. Llibre, R. Martınez, C. Simó, Station keeping of a quasiperiodic halo orbit using invariant manifolds, in: Proceed. 2nd Internat. Symp. on Spacecraft Flight Dynamics, Darmstadt, 1986, pp. 65–70.
– start-page: 1
  year: 2020
  end-page: 14
  ident: b31
  article-title: Multi-phase MPSP guidance for lunar soft landing
  publication-title: Trans. Indian Natl. Acad. Eng.
– volume: 45
  start-page: 398
  year: 2010
  end-page: 409
  ident: b26
  article-title: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem
  publication-title: Adv. Space Res.
– reference: T. Pavlak, K. Howell, Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system, in: AIAA/AAS Astrodynamics Specialist Conference Paper, AIAA 2012 - 4665.
– volume: 5
  start-page: 399
  year: 2009
  end-page: 411
  ident: b23
  article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design
  publication-title: Int. J. Innovative Comput. Inf. Control
– year: 2015
  ident: b8
  article-title: Quasi-periodic orbits around Sun–Earth L2 libration point and their transfer trajectories in Russian space missions
– volume: 52
  start-page: 2067
  year: 2013
  end-page: 2079
  ident: b17
  article-title: Optimal station-keeping near Earth–Moon collinear libration points using continuous and impulsive maneuvers
  publication-title: Adv. Space Res.
– year: 2021
  ident: b25
  article-title: NASA JPL Horizons web-interface
– year: 2001
  ident: b28
  article-title: Dynamics and Mission Design Near Libration Points: Fundamentals-the Case of Collinear Libration Points, vol. 1
– volume: 41
  start-page: 879
  year: 2018
  end-page: 887
  ident: b2
  article-title: Fault-tolerant station-keeping on libration point orbits
  publication-title: J. Guid. Control Dyn.
– start-page: 1478
  year: 2020
  end-page: 1483
  ident: b21
  article-title: A near fuel-optimal station-keeping strategy for halo orbits
  publication-title: 2020 59th IEEE Conference on Decision and Control (CDC)
– volume: 16
  start-page: 151
  year: 1993
  end-page: 159
  ident: b16
  article-title: Station-keeping method for libration point trajectories
  publication-title: J. Guid. Control Dyn.
– volume: 42
  start-page: 1912
  year: 2019
  end-page: 1929
  ident: b5
  article-title: Hamiltonian structure-based robust station-keeping for unstable libration point orbits
  publication-title: J. Guid. Control Dyn.
– year: 2018
  ident: b27
  article-title: Spacecraft trajectory design techniques using resonant orbits
– start-page: 1377
  year: 1995
  end-page: 1396
  ident: b18
  article-title: Station-keeping strategies for libration point orbits- Target point and Floquet Mode approaches
  publication-title: Spacefl. Mech.
– volume: 94
  start-page: 421
  year: 2014
  end-page: 433
  ident: b14
  article-title: Earth–Moon libration point orbit stationkeeping: theory, modeling, and operations
  publication-title: Acta Astronaut.
– volume: 47
  start-page: 41
  year: 2014
  end-page: 46
  ident: b22
  article-title: Computationally efficient suboptimal control design for impulsive systems based on model predictive static programming
  publication-title: IFAC Proc. Vol.
– volume: 7
  start-page: 83
  year: 2019
  end-page: 104
  ident: b32
  article-title: Waypoint constrained multi-phase optimal guidance of spacecraft for soft lunar landing
  publication-title: Unmanned Syst.
– year: 2008
  ident: b29
  article-title: Rocket and Spacecraft Propulsion: Principles, Practice and New Developments
– volume: 30
  start-page: 579
  year: 1992
  end-page: 595
  ident: b7
  article-title: The guaranteeing synthesis of control for stabilization of the motion of a space vehicle in the vicinity of unstable libration points
  publication-title: Kosmicheskie Issledovaniia
– volume: 15
  start-page: 391
  year: 1987
  end-page: 397
  ident: b11
  article-title: On the optimal station keeping control of halo orbits
  publication-title: Acta Astronaut.
– reference: A. Farrés, G. Gómez, J. Masdemont, C. Webster, D. Folta, The geometry of stationkeeping strategies around libration point orbits, in: 70th International Astronautical Congress, Washington DC, 1986.
– year: 2020
  ident: b19
  article-title: Hybrid station-keeping controller design leveraging floquet mode and reinforcement learning approaches
– volume: 45
  start-page: 398
  issue: 3
  year: 2010
  ident: 10.1016/j.actaastro.2021.07.041_b26
  article-title: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2009.10.023
– volume: 40
  start-page: 1085
  issue: 5
  year: 2017
  ident: 10.1016/j.actaastro.2021.07.041_b1
  article-title: Survey of station-keeping techniques for libration point orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G001850
– volume: 15
  start-page: 391
  issue: 6–7
  year: 1987
  ident: 10.1016/j.actaastro.2021.07.041_b11
  article-title: On the optimal station keeping control of halo orbits
  publication-title: Acta Astronaut.
  doi: 10.1016/0094-5765(87)90175-5
– ident: 10.1016/j.actaastro.2021.07.041_b12
– start-page: 1
  year: 2020
  ident: 10.1016/j.actaastro.2021.07.041_b31
  article-title: Multi-phase MPSP guidance for lunar soft landing
  publication-title: Trans. Indian Natl. Acad. Eng.
– volume: 7
  start-page: 83
  issue: 02
  year: 2019
  ident: 10.1016/j.actaastro.2021.07.041_b32
  article-title: Waypoint constrained multi-phase optimal guidance of spacecraft for soft lunar landing
  publication-title: Unmanned Syst.
  doi: 10.1142/S230138501950002X
– volume: 45
  start-page: 344
  issue: 2
  year: 2008
  ident: 10.1016/j.actaastro.2021.07.041_b15
  article-title: Multibody orbit architectures for lunar south pole coverage
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.28738
– volume: 41
  start-page: 879
  issue: 4
  year: 2018
  ident: 10.1016/j.actaastro.2021.07.041_b2
  article-title: Fault-tolerant station-keeping on libration point orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G003115
– volume: 35
  start-page: 153
  issue: 1
  year: 2012
  ident: 10.1016/j.actaastro.2021.07.041_b24
  article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.53647
– year: 2018
  ident: 10.1016/j.actaastro.2021.07.041_b27
– ident: 10.1016/j.actaastro.2021.07.041_b13
  doi: 10.2514/6.2012-4665
– volume: 30
  start-page: 579
  issue: 5
  year: 1992
  ident: 10.1016/j.actaastro.2021.07.041_b7
  article-title: The guaranteeing synthesis of control for stabilization of the motion of a space vehicle in the vicinity of unstable libration points
  publication-title: Kosmicheskie Issledovaniia
– volume: 47
  start-page: 41
  issue: 1
  year: 2014
  ident: 10.1016/j.actaastro.2021.07.041_b22
  article-title: Computationally efficient suboptimal control design for impulsive systems based on model predictive static programming
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140313-3-IN-3024.00172
– volume: 94
  start-page: 421
  issue: 1
  year: 2014
  ident: 10.1016/j.actaastro.2021.07.041_b14
  article-title: Earth–Moon libration point orbit stationkeeping: theory, modeling, and operations
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2013.01.022
– volume: 153
  start-page: 289
  year: 2018
  ident: 10.1016/j.actaastro.2021.07.041_b4
  article-title: Station-keeping and formation flying based on nonlinear output regulation theory
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.02.004
– volume: 14
  start-page: 184
  issue: 3
  year: 2017
  ident: 10.1016/j.actaastro.2021.07.041_b30
  article-title: Comparative analysis of present and future space-grade processors with device metrics
  publication-title: J. Aerosp. Inf. Syst.
– year: 2020
  ident: 10.1016/j.actaastro.2021.07.041_b19
– volume: 52
  start-page: 2067
  issue: 12
  year: 2013
  ident: 10.1016/j.actaastro.2021.07.041_b17
  article-title: Optimal station-keeping near Earth–Moon collinear libration points using continuous and impulsive maneuvers
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2013.09.021
– ident: 10.1016/j.actaastro.2021.07.041_b34
– volume: 42
  start-page: 1912
  issue: 9
  year: 2019
  ident: 10.1016/j.actaastro.2021.07.041_b5
  article-title: Hamiltonian structure-based robust station-keeping for unstable libration point orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G003990
– volume: 24
  start-page: 497
  issue: 4
  year: 1986
  ident: 10.1016/j.actaastro.2021.07.041_b9
  article-title: Control of spacecraft motion in neighborhood of collinear libration center in restricted elliptical three-body problem
  publication-title: Kosmicheskie Issledovaniya
– start-page: 1478
  year: 2020
  ident: 10.1016/j.actaastro.2021.07.041_b21
  article-title: A near fuel-optimal station-keeping strategy for halo orbits
– volume: 99
  start-page: 949
  issue: 2
  year: 1998
  ident: 10.1016/j.actaastro.2021.07.041_b33
  article-title: Station-keeping strategies for translunar libration point orbits
  publication-title: Adv. Astronaut. Sci.
– year: 2021
  ident: 10.1016/j.actaastro.2021.07.041_b25
– volume: 14
  start-page: 922
  issue: 6
  year: 1977
  ident: 10.1016/j.actaastro.2021.07.041_b6
  article-title: Statistical estimates in the control problem for motion of a space vehicle in the vicinity of a collinear libration point
  publication-title: Cosm. Res.
– year: 2008
  ident: 10.1016/j.actaastro.2021.07.041_b29
– volume: 30
  start-page: 712
  issue: 5
  year: 1992
  ident: 10.1016/j.actaastro.2021.07.041_b10
  article-title: An optimal program of impulse corrections of unstable periodic orbits
  publication-title: Kosmicheskie Issledovaniya
– volume: 41
  start-page: 1407
  issue: 6
  year: 2018
  ident: 10.1016/j.actaastro.2021.07.041_b3
  article-title: Explicit form of station-keeping and formation flying controller for libration point orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G002845
– year: 2017
  ident: 10.1016/j.actaastro.2021.07.041_b20
– volume: 16
  start-page: 151
  issue: 1
  year: 1993
  ident: 10.1016/j.actaastro.2021.07.041_b16
  article-title: Station-keeping method for libration point trajectories
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.11440
– year: 2001
  ident: 10.1016/j.actaastro.2021.07.041_b28
– volume: 5
  start-page: 399
  issue: 2
  year: 2009
  ident: 10.1016/j.actaastro.2021.07.041_b23
  article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design
  publication-title: Int. J. Innovative Comput. Inf. Control
– year: 2015
  ident: 10.1016/j.actaastro.2021.07.041_b8
– start-page: 1377
  year: 1995
  ident: 10.1016/j.actaastro.2021.07.041_b18
  article-title: Station-keeping strategies for libration point orbits- Target point and Floquet Mode approaches
  publication-title: Spacefl. Mech.
SSID ssj0007289
Score 2.3350194
Snippet In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 518
SubjectTerms Algorithms
Circular restricted three body problem
Constraint modelling
Cost function
Elliptic four body problem
Four body problem
Iterative methods
Maneuvers
Model predictive static programming
Nonlinear control
Optimal control
Optimization
Quasi-halo orbits
Spacecraft
Spacecraft guidance
Station-keeping
Terminal constraints
Title An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits
URI https://dx.doi.org/10.1016/j.actaastro.2021.07.041
https://www.proquest.com/docview/2584777517
Volume 188
WOSCitedRecordID wos000693831100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOVXmJloJ84LYK2iR2HPe2qoqAQ4WgoL1ZfiSQ7pItm6Tqz2f8SPYBaOmBSxQlsuNkPo_Hk5lvEHqtFNGKAnh5SVVE0gKmlCZjmHhUSyVNUlLjik2wi4t8OuX9H93GlRNgdZ3f3vLr_ypquAbCtqmzdxD30ClcgHMQOhxB7HD8J8FPapv62M1dXLordGOJAEzlFJt1HViK1hCW9cM6CuxCZvyNRR3NisKlUH3rKuPSCWwc4s9ONlX0Xc4Xo8VSVZ79aSCv1a0cycb61KVzjfdC_Nq13azzqeyf4c3rqhmczx-lceWER5_gRM5kCL8J_ockDol4azqVkwh2LXRTp-ZrWpEGFesXWOp_xPymu70b4Qpw1Eo36Df2cY5a1XNjbbJlb61iQ2xhH7Z2JYaOhO1IjJkYW4qD_YRRDipxf_L-fPphWLZZkvu9UnidjWDAP47pb6bM1qLuLJXLQ3QQthh44qHxCN0r6sfo4Rrx5BNUTGo8gAQ7kOAVSLAHCV4DCXYgwVsgwT1IMIAEr0CCPUieoi9vzy_P3kWh4EakU5K2Ua45KXkJOlxralJW6kzzUqcmVmDClLmKlYkTnfCMZVmeMks-ydNS01hypglJn6G9elEXzxEubPGj3LBEEUJgz6F4aZO485jKNJGSHaGs_3ZCBzZ6WxRlLnbI7wiNh4bXnpBld5PTXjgi2JXeXhQAvd2NT3pxijDLG5HY4ALGaMyO7z6cF-jBah6doL122RUv0X1901bN8lWA5S9hiq2X
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+impulsive+model+predictive+static+programming+based+station-keeping+guidance+for+quasi-halo+orbits&rft.jtitle=Acta+astronautica&rft.au=Vutukuri%2C+Srianish&rft.au=Padhi%2C+Radhakant&rft.date=2021-11-01&rft.issn=0094-5765&rft.volume=188&rft.spage=518&rft.epage=530&rft_id=info:doi/10.1016%2Fj.actaastro.2021.07.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2021_07_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon