Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide

•Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at workin...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science Vol. 434; pp. 1048 - 1054
Main Authors: Ha, Nguyen Hai, Thinh, Dao Duc, Huong, Nguyen Thanh, Phuong, Nguyen Huy, Thach, Phan Duy, Hong, Hoang Si
Format: Journal Article
Language:English
Published: Elsevier B.V 15.03.2018
Subjects:
ISSN:0169-4332, 1873-5584
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at working temperature of 200 oC. Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1–1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability.
AbstractList •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at working temperature of 200 oC. Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1–1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability.
Author Ha, Nguyen Hai
Thach, Phan Duy
Thinh, Dao Duc
Phuong, Nguyen Huy
Huong, Nguyen Thanh
Hong, Hoang Si
Author_xml – sequence: 1
  givenname: Nguyen Hai
  surname: Ha
  fullname: Ha, Nguyen Hai
– sequence: 2
  givenname: Dao Duc
  surname: Thinh
  fullname: Thinh, Dao Duc
– sequence: 3
  givenname: Nguyen Thanh
  surname: Huong
  fullname: Huong, Nguyen Thanh
– sequence: 4
  givenname: Nguyen Huy
  surname: Phuong
  fullname: Phuong, Nguyen Huy
– sequence: 5
  givenname: Phan Duy
  surname: Thach
  fullname: Thach, Phan Duy
– sequence: 6
  givenname: Hoang Si
  surname: Hong
  fullname: Hong, Hoang Si
  email: hong.hoangsy@hust.edu.vn
BookMark eNqFkE1u2zAQRokiAeo4uUEWvIBU_kiW3EWBIm2SAgGyaTfZECNyZNO1SYFDJ_UFcu7ScFddJKvBYPi-D3wX7CzEgIxdS1FLIRefNjVMtCdbKyG7WspaNN0HNpN9p6u27ZszNivPllWjtfrILog2QkhVrjP2eguUeUKaYiDkceQW0hAD38UQ_3iHfAXECQPFRHxPPqw48LVfrbcHPsUU98QD5peYfh_hp_DIA4Q4QcrebpG4QxsTZHS8hOpvpcrtbdlWCaY1hlJ5bLlk5yNsCa_-zTn7dfv958199fB49-Pm60NldaNz1Sk3jA060Q9W6rYXrRrbthVqaRcLhA6lBLEYlFS2kUNfdquXrlEADkXXKz1nn0-5NkWihKOxPkP2MeQEfmukMEejZmNORs3RqJHSFKMFbv6Dp-R3kA7vYV9OGJaPPXtMhqzHUCT4hDYbF_3bAX8B_gmXfg
CitedBy_id crossref_primary_10_1002_admi_201801689
crossref_primary_10_1002_ppsc_201800105
crossref_primary_10_1016_j_mssp_2021_106051
crossref_primary_10_1088_1742_6596_2934_1_012028
crossref_primary_10_1088_2043_6262_aca022
crossref_primary_10_1002_admi_201902062
crossref_primary_10_1007_s10854_021_06745_1
crossref_primary_10_3390_s21061958
crossref_primary_10_1016_j_snb_2019_127649
crossref_primary_10_1016_j_jallcom_2019_01_099
crossref_primary_10_1016_j_inoche_2023_111163
crossref_primary_10_1016_j_snb_2022_131917
crossref_primary_10_32604_jpm_2024_052695
crossref_primary_10_1016_j_apmt_2019_100483
crossref_primary_10_1088_1361_6528_abbca8
crossref_primary_10_1007_s10854_021_07578_8
crossref_primary_10_1016_j_jallcom_2025_182071
crossref_primary_10_1016_j_mattod_2024_12_020
crossref_primary_10_1080_20550324_2021_2008207
crossref_primary_10_1016_j_jallcom_2019_02_066
crossref_primary_10_1016_j_snb_2018_07_040
crossref_primary_10_3390_app9061167
crossref_primary_10_1002_adfm_202405260
crossref_primary_10_1016_j_sna_2022_113578
crossref_primary_10_1016_j_sna_2021_113120
crossref_primary_10_1088_1361_6528_ab6fd9
crossref_primary_10_1109_JSEN_2019_2948983
crossref_primary_10_1109_TII_2019_2963683
crossref_primary_10_1016_j_ces_2018_07_007
crossref_primary_10_1016_j_snb_2019_127012
crossref_primary_10_1109_ACCESS_2019_2949463
crossref_primary_10_3390_app11209536
crossref_primary_10_1007_s10854_023_10806_y
crossref_primary_10_1016_j_ceramint_2018_12_205
crossref_primary_10_1016_j_mtcomm_2019_100826
crossref_primary_10_3390_nano11113151
crossref_primary_10_1016_j_chemosphere_2022_133772
crossref_primary_10_1016_j_mssp_2021_105904
crossref_primary_10_1007_s10854_024_13271_3
crossref_primary_10_1016_j_snb_2021_129779
crossref_primary_10_3389_fmats_2022_831725
crossref_primary_10_1007_s12598_020_01633_9
crossref_primary_10_1016_j_apsusc_2019_07_133
crossref_primary_10_3390_su142113978
crossref_primary_10_1016_j_apsusc_2019_02_195
crossref_primary_10_1016_j_ceramint_2017_12_038
crossref_primary_10_1002_adsr_202400031
crossref_primary_10_1039_C9RA03171E
crossref_primary_10_1016_j_apsusc_2017_11_133
crossref_primary_10_1109_JSEN_2022_3191042
crossref_primary_10_1016_j_cplett_2023_140803
crossref_primary_10_1016_j_sna_2020_112142
crossref_primary_10_1016_j_mseb_2023_117003
crossref_primary_10_1088_2399_7532_ac1732
crossref_primary_10_3390_mi15010077
crossref_primary_10_1016_j_apsusc_2021_150272
crossref_primary_10_1002_tcr_202300350
crossref_primary_10_1016_j_tsf_2024_140442
crossref_primary_10_1016_j_jlumin_2022_119112
crossref_primary_10_3390_nano12122025
crossref_primary_10_1088_1742_6596_2653_1_012062
crossref_primary_10_1016_j_cplett_2019_137067
crossref_primary_10_1038_s41598_024_76678_2
crossref_primary_10_3389_fchem_2018_00399
crossref_primary_10_3390_s19030615
crossref_primary_10_1016_j_microc_2024_111053
crossref_primary_10_1007_s10854_020_02937_3
crossref_primary_10_1007_s10854_019_01111_8
crossref_primary_10_1016_j_mtcomm_2022_103182
crossref_primary_10_1016_j_optmat_2022_112903
crossref_primary_10_1088_1755_1315_332_3_032007
crossref_primary_10_1007_s10854_021_07409_w
crossref_primary_10_1002_smtd_201900735
crossref_primary_10_1007_s10854_021_05664_5
crossref_primary_10_1016_j_apsusc_2019_144302
crossref_primary_10_1016_j_ceramint_2020_10_257
crossref_primary_10_1016_j_snb_2018_12_151
crossref_primary_10_3390_polym14235125
crossref_primary_10_1016_j_prime_2024_100496
crossref_primary_10_1016_j_matchemphys_2020_122766
crossref_primary_10_1088_2399_6528_ad777b
crossref_primary_10_1088_2632_959X_ac477b
crossref_primary_10_1109_ACCESS_2020_2976841
crossref_primary_10_1007_s00604_024_06326_z
crossref_primary_10_1515_zna_2018_0453
crossref_primary_10_1016_j_snb_2018_11_070
crossref_primary_10_1007_s11665_025_11570_2
crossref_primary_10_1016_j_snb_2019_05_065
crossref_primary_10_1016_j_snb_2018_08_144
crossref_primary_10_1109_JSEN_2020_3027786
crossref_primary_10_1016_j_nanoen_2021_106165
crossref_primary_10_1007_s11664_022_10161_4
crossref_primary_10_1088_1742_6596_1432_1_012040
crossref_primary_10_1016_j_snb_2023_134621
crossref_primary_10_3390_ma17020303
Cites_doi 10.1016/j.snb.2012.07.092
10.1021/ja308676h
10.1016/j.snb.2008.02.034
10.1016/j.snb.2012.09.034
10.1021/nn101187z
10.1002/adma.201102838
10.1016/j.snb.2016.04.043
10.1016/j.snb.2016.12.026
10.1021/nn3003345
10.1016/j.snb.2012.05.090
10.1016/j.ijhydene.2013.08.107
10.1016/j.snb.2013.02.047
10.1002/smll.200901084
10.1016/j.snb.2008.01.030
10.1016/j.snb.2012.10.080
10.1021/jp100343d
10.1016/j.snb.2016.12.117
10.1016/j.jcis.2014.08.071
10.1021/jz101639v
10.1039/c1cc13329b
10.1039/c3ta00166k
10.1039/C3NR04555B
10.1021/jz900265j
10.1016/j.teac.2017.02.001
10.1039/c1nr10355e
10.1016/j.carbon.2011.08.050
10.1016/j.proeng.2016.11.198
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2017.11.047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 1054
ExternalDocumentID 10_1016_j_apsusc_2017_11_047
S0169433217332919
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
WUQ
~HD
ID FETCH-LOGICAL-c343t-72dbf4ed08bc1358052f555029c66ea7e11a06b212c41b87e1c39d42aade07823
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419116600121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-4332
IngestDate Tue Nov 18 22:19:34 EST 2025
Sat Nov 29 07:22:22 EST 2025
Fri Feb 23 02:45:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO gas sensor
Fast response/recovery
ZnO nanoparticles
MEMS technology
3D-RGO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-72dbf4ed08bc1358052f555029c66ea7e11a06b212c41b87e1c39d42aade07823
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_apsusc_2017_11_047
crossref_primary_10_1016_j_apsusc_2017_11_047
elsevier_sciencedirect_doi_10_1016_j_apsusc_2017_11_047
PublicationCentury 2000
PublicationDate 2018-03-15
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kamat (bib0045) 2011; 2
Rakesk, Joshi (bib0125) 2010; 114
Singh (bib0130) 2012; 50
Basu, Bhattacharyya (bib0035) 2012; 173
Steinhauer (bib0140) 2013; 187
Li, Wu, Huang, Zhang (bib0005) 2017; 243
Chen, Yan (bib0055) 2011; 3
Vallejos, Gràcia, Figueras, Pizurova, Hubálek, Cané (bib0030) 2016; 168
Balamurugan, Arunkumar, Lee (bib0145) 2016; 234
Kolavennu, Gonia (bib0105) 2016
Bahrami (bib0115) 2008; 133
Pham (bib0065) 2011; 47
Li, Liu, Yang (bib0085) 2013; 1
Korotcenkov, Cho (bib0025) 2017; 244
Burckel (bib0080) 2009; 5
Luan, Tien, Hur (bib0100) 2015; 437
Phan, Chung (bib0095) 2014; 39
Choi (bib0070) 2012; 6
Jiang, Fan (bib0075) 2014; 6
Xu (bib0050) 2010; 4
Hi Gyu (bib0120) 2010; 149
Maduraiveeran, Jin (bib0020) 2017; 13
Phan, Chung (bib0010) 2013; 187
Wu (bib0090) 2012; 134
Neri (bib0110) 2008; 132
Khoang, Hong, Trung, Duy, Hoa, Thinh, Hieu (bib0015) 2013; 181
Kamat (bib0040) 2009; 1
Zeng (bib0135) 2012; 172
Chen (bib0060) 2011; 23
Burckel (10.1016/j.apsusc.2017.11.047_bib0080) 2009; 5
Wu (10.1016/j.apsusc.2017.11.047_bib0090) 2012; 134
Steinhauer (10.1016/j.apsusc.2017.11.047_bib0140) 2013; 187
Rakesk (10.1016/j.apsusc.2017.11.047_bib0125) 2010; 114
Kamat (10.1016/j.apsusc.2017.11.047_bib0045) 2011; 2
Li (10.1016/j.apsusc.2017.11.047_bib0085) 2013; 1
Luan (10.1016/j.apsusc.2017.11.047_bib0100) 2015; 437
Khoang (10.1016/j.apsusc.2017.11.047_bib0015) 2013; 181
Chen (10.1016/j.apsusc.2017.11.047_bib0055) 2011; 3
Neri (10.1016/j.apsusc.2017.11.047_bib0110) 2008; 132
Balamurugan (10.1016/j.apsusc.2017.11.047_bib0145) 2016; 234
Bahrami (10.1016/j.apsusc.2017.11.047_bib0115) 2008; 133
Phan (10.1016/j.apsusc.2017.11.047_bib0095) 2014; 39
Pham (10.1016/j.apsusc.2017.11.047_bib0065) 2011; 47
Jiang (10.1016/j.apsusc.2017.11.047_bib0075) 2014; 6
Basu (10.1016/j.apsusc.2017.11.047_bib0035) 2012; 173
Hi Gyu (10.1016/j.apsusc.2017.11.047_bib0120) 2010; 149
Xu (10.1016/j.apsusc.2017.11.047_bib0050) 2010; 4
Kolavennu (10.1016/j.apsusc.2017.11.047_bib0105) 2016
Maduraiveeran (10.1016/j.apsusc.2017.11.047_bib0020) 2017; 13
Choi (10.1016/j.apsusc.2017.11.047_bib0070) 2012; 6
Vallejos (10.1016/j.apsusc.2017.11.047_bib0030) 2016; 168
Singh (10.1016/j.apsusc.2017.11.047_bib0130) 2012; 50
Chen (10.1016/j.apsusc.2017.11.047_bib0060) 2011; 23
Kamat (10.1016/j.apsusc.2017.11.047_bib0040) 2009; 1
Zeng (10.1016/j.apsusc.2017.11.047_bib0135) 2012; 172
Phan (10.1016/j.apsusc.2017.11.047_bib0010) 2013; 187
Korotcenkov (10.1016/j.apsusc.2017.11.047_bib0025) 2017; 244
Li (10.1016/j.apsusc.2017.11.047_bib0005) 2017; 243
References_xml – volume: 437
  start-page: 181
  year: 2015
  end-page: 186
  ident: bib0100
  article-title: Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal
  publication-title: J. Colloid Interface Sci.
– volume: 133
  start-page: 352
  year: 2008
  end-page: 356
  ident: bib0115
  article-title: Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane
  publication-title: Sens. Actuators B
– volume: 181
  start-page: 529
  year: 2013
  end-page: 536
  ident: bib0015
  article-title: On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas
  publication-title: Sens. Actuators B: Chem.
– volume: 173
  start-page: 1
  year: 2012
  end-page: 21
  ident: bib0035
  article-title: Recent developments on graphene and graphene oxide based solid state gas sensors
  publication-title: Sens. Actuators B
– volume: 132
  start-page: 224
  year: 2008
  end-page: 233
  ident: bib0110
  article-title: Resistive CO gas sensors based on In
  publication-title: Sens. Actuators B
– volume: 50
  start-page: 385
  year: 2012
  end-page: 394
  ident: bib0130
  article-title: ZnO decorated luminescent graphene as a potential gas sensor at room temperature
  publication-title: Carbon
– volume: 6
  start-page: 1922
  year: 2014
  end-page: 1945
  ident: bib0075
  article-title: Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures
  publication-title: Nanoscale
– volume: 134
  start-page: 19532
  year: 2012
  end-page: 19535
  ident: bib0090
  article-title: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 620
  year: 2014
  end-page: 629
  ident: bib0095
  article-title: Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites
  publication-title: Int. J. Hydrogen Energy
– volume: 114
  start-page: 6610
  year: 2010
  end-page: 6613
  ident: bib0125
  article-title: Graphene films and ribbons for sensing of O
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 5679
  year: 2011
  end-page: 5683
  ident: bib0060
  article-title: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel
  publication-title: Adv. Mater.
– volume: 149
  start-page: 2116
  year: 2010
  end-page: 2121
  ident: bib0120
  article-title: Highly sensitive CO sensor based on cross-linked TiO
  publication-title: Sens. Actuators B
– volume: 3
  start-page: 3132
  year: 2011
  end-page: 3137
  ident: bib0055
  article-title: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
  publication-title: Nanoscale
– volume: 1
  start-page: 3446
  year: 2013
  end-page: 3453
  ident: bib0085
  article-title: Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup
  publication-title: J. Mater. Chem. A
– volume: 243
  start-page: 566
  year: 2017
  end-page: 578
  ident: bib0005
  article-title: Gas sensors based on membrane diffusion for environmental monitoring
  publication-title: Sens. Actuators B: Chem.
– volume: 47
  start-page: 9672
  year: 2011
  end-page: 9674
  ident: bib0065
  article-title: Synthesis of the chemically converted graphene xerogel with superior electrical conductivity
  publication-title: Chem. Commun.
– volume: 1
  start-page: 520
  year: 2009
  end-page: 527
  ident: bib0040
  article-title: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 10
  year: 2017
  end-page: 23
  ident: bib0020
  article-title: Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications
  publication-title: Trends Environ. Anal. Chem.
– start-page: 155
  year: 2016
  end-page: 166
  ident: bib0105
  article-title: 8 – Wireless gas sensors for industrial life safety
  publication-title: Industrial Wireless Sensor Networks
– volume: 172
  start-page: 897
  year: 2012
  end-page: 902
  ident: bib0135
  article-title: Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films
  publication-title: Sens. Actuators B
– volume: 187
  start-page: 50
  year: 2013
  end-page: 57
  ident: bib0140
  article-title: Gas sensing properties of novel CuO nanowire devices
  publication-title: Sens. Actuators B
– volume: 234
  start-page: 155
  year: 2016
  end-page: 166
  ident: bib0145
  article-title: Hierarchical 3D nanostructure of GdInO3 and reduced-graphene-decorated GdInO3 nanocomposite for CO sensing applications
  publication-title: Sens. Actuators B: Chem.
– volume: 2
  start-page: 242
  year: 2011
  end-page: 251
  ident: bib0045
  article-title: Graphene-based nanoassemblies for energy conversion
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 4020
  year: 2012
  end-page: 4028
  ident: bib0070
  article-title: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities
  publication-title: ACS Nano
– volume: 244
  start-page: 182
  year: 2017
  end-page: 210
  ident: bib0025
  article-title: Metal oxide composites in conductometric gas sensors: achievements and challenges
  publication-title: Sens. Actuators B: Chem.
– volume: 187
  start-page: 191
  year: 2013
  end-page: 197
  ident: bib0010
  article-title: Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties
  publication-title: Sens. Actuators B: Chem.
– volume: 5
  start-page: 2792
  year: 2009
  end-page: 2796
  ident: bib0080
  article-title: Lithographically defined porous carbon electrodes
  publication-title: Small
– volume: 168
  start-page: 415
  year: 2016
  end-page: 418
  ident: bib0030
  article-title: ZnO-based gasmicrosensors sensitive to CO at room temperature byphotoactivation
  publication-title: Procedia Eng.
– volume: 4
  start-page: 4324
  year: 2010
  end-page: 4330
  ident: bib0050
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
– volume: 173
  start-page: 1
  year: 2012
  ident: 10.1016/j.apsusc.2017.11.047_bib0035
  article-title: Recent developments on graphene and graphene oxide based solid state gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.07.092
– volume: 134
  start-page: 19532
  issue: 48
  year: 2012
  ident: 10.1016/j.apsusc.2017.11.047_bib0090
  article-title: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308676h
– volume: 133
  start-page: 352
  year: 2008
  ident: 10.1016/j.apsusc.2017.11.047_bib0115
  article-title: Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.02.034
– volume: 149
  start-page: 2116
  year: 2010
  ident: 10.1016/j.apsusc.2017.11.047_bib0120
  article-title: Highly sensitive CO sensor based on cross-linked TiO2 hollow hemispheres
  publication-title: Sens. Actuators B
– volume: 187
  start-page: 50
  year: 2013
  ident: 10.1016/j.apsusc.2017.11.047_bib0140
  article-title: Gas sensing properties of novel CuO nanowire devices
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.09.034
– volume: 4
  start-page: 4324
  issue: 7
  year: 2010
  ident: 10.1016/j.apsusc.2017.11.047_bib0050
  article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process
  publication-title: ACS Nano
  doi: 10.1021/nn101187z
– volume: 23
  start-page: 5679
  issue: 47
  year: 2011
  ident: 10.1016/j.apsusc.2017.11.047_bib0060
  article-title: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102838
– volume: 234
  start-page: 155
  year: 2016
  ident: 10.1016/j.apsusc.2017.11.047_bib0145
  article-title: Hierarchical 3D nanostructure of GdInO3 and reduced-graphene-decorated GdInO3 nanocomposite for CO sensing applications
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2016.04.043
– volume: 243
  start-page: 566
  year: 2017
  ident: 10.1016/j.apsusc.2017.11.047_bib0005
  article-title: Gas sensors based on membrane diffusion for environmental monitoring
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2016.12.026
– volume: 6
  start-page: 4020
  issue: 5
  year: 2012
  ident: 10.1016/j.apsusc.2017.11.047_bib0070
  article-title: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities
  publication-title: ACS Nano
  doi: 10.1021/nn3003345
– volume: 172
  start-page: 897
  year: 2012
  ident: 10.1016/j.apsusc.2017.11.047_bib0135
  article-title: Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.05.090
– volume: 39
  start-page: 620
  year: 2014
  ident: 10.1016/j.apsusc.2017.11.047_bib0095
  article-title: Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.08.107
– volume: 181
  start-page: 529
  year: 2013
  ident: 10.1016/j.apsusc.2017.11.047_bib0015
  article-title: On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.02.047
– volume: 5
  start-page: 2792
  issue: 24
  year: 2009
  ident: 10.1016/j.apsusc.2017.11.047_bib0080
  article-title: Lithographically defined porous carbon electrodes
  publication-title: Small
  doi: 10.1002/smll.200901084
– volume: 132
  start-page: 224
  year: 2008
  ident: 10.1016/j.apsusc.2017.11.047_bib0110
  article-title: Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.01.030
– volume: 187
  start-page: 191
  year: 2013
  ident: 10.1016/j.apsusc.2017.11.047_bib0010
  article-title: Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2012.10.080
– volume: 114
  start-page: 6610
  year: 2010
  ident: 10.1016/j.apsusc.2017.11.047_bib0125
  article-title: Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp100343d
– volume: 244
  start-page: 182
  year: 2017
  ident: 10.1016/j.apsusc.2017.11.047_bib0025
  article-title: Metal oxide composites in conductometric gas sensors: achievements and challenges
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2016.12.117
– volume: 437
  start-page: 181
  year: 2015
  ident: 10.1016/j.apsusc.2017.11.047_bib0100
  article-title: Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.08.071
– volume: 2
  start-page: 242
  year: 2011
  ident: 10.1016/j.apsusc.2017.11.047_bib0045
  article-title: Graphene-based nanoassemblies for energy conversion
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101639v
– volume: 47
  start-page: 9672
  issue: 34
  year: 2011
  ident: 10.1016/j.apsusc.2017.11.047_bib0065
  article-title: Synthesis of the chemically converted graphene xerogel with superior electrical conductivity
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13329b
– volume: 1
  start-page: 3446
  issue: 10
  year: 2013
  ident: 10.1016/j.apsusc.2017.11.047_bib0085
  article-title: Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta00166k
– start-page: 155
  year: 2016
  ident: 10.1016/j.apsusc.2017.11.047_bib0105
  article-title: 8 – Wireless gas sensors for industrial life safety
– volume: 6
  start-page: 1922
  issue: 4
  year: 2014
  ident: 10.1016/j.apsusc.2017.11.047_bib0075
  article-title: Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures
  publication-title: Nanoscale
  doi: 10.1039/C3NR04555B
– volume: 1
  start-page: 520
  year: 2009
  ident: 10.1016/j.apsusc.2017.11.047_bib0040
  article-title: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900265j
– volume: 13
  start-page: 10
  year: 2017
  ident: 10.1016/j.apsusc.2017.11.047_bib0020
  article-title: Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications
  publication-title: Trends Environ. Anal. Chem.
  doi: 10.1016/j.teac.2017.02.001
– volume: 3
  start-page: 3132
  issue: 8
  year: 2011
  ident: 10.1016/j.apsusc.2017.11.047_bib0055
  article-title: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
  publication-title: Nanoscale
  doi: 10.1039/c1nr10355e
– volume: 50
  start-page: 385
  year: 2012
  ident: 10.1016/j.apsusc.2017.11.047_bib0130
  article-title: ZnO decorated luminescent graphene as a potential gas sensor at room temperature
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.050
– volume: 168
  start-page: 415
  year: 2016
  ident: 10.1016/j.apsusc.2017.11.047_bib0030
  article-title: ZnO-based gasmicrosensors sensitive to CO at room temperature byphotoactivation
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.11.198
SSID ssj0012873
Score 2.5521295
Snippet •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1048
SubjectTerms 3D-RGO
CO gas sensor
Fast response/recovery
MEMS technology
ZnO nanoparticles
Title Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide
URI https://dx.doi.org/10.1016/j.apsusc.2017.11.047
Volume 434
WOSCitedRecordID wos000419116600121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-5584
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012873
  issn: 0169-4332
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5M0kN7KH3SpA_20JtQiLR6HkOd4JaSBuqC6UWsVqvYIayNZAXnD_Sn9Xd1Zmdlu0noC3pZLNn7wPNpdmY08y1jb2WdIfmt8pNQ5X4EV35WYgZALso60wAibSnzP6anp9lkkp8NBt_7Wpiry9SYbLXKF_9V1HAPhI2ls38h7vWgcAM-g9ChBbFD-0eCP5Ht0mso9dUGBJRsSpAxLGC-mlXaO5et14L3isfsdDZUID1kLcY4x7yxjK2UG46dv5pPnpEGXGuXQedV6LBKNFRhUDGEqaoOkwgs9TVoTs_Osm309pZu2zW1REpb0icb5Wched5da-ON5GyTqzIzU8q7n3vDTm0Q6NKIXZfxVJp1UPtseuPbUXe9HdkIbKkf1XZSuO1WyQ1FQJMcy7xIhWvS2lkq_Dims-Z6tR65ICkpZvA6s61NHqzK6M4NhGIZFwdy0eI5c7Cs9ABZXokW9AY192dcDK4lSKHJkX12N0zjHLTr7tH748mH9fss8EsFsczT4vsiTptpeHuuu42kLcNn_Ig9dB4LPyL5P2YDbZ6wB1s8lk_ZN8Qc7zHH5zUnzPEecxwwxx3muMUcl5wwxwlz3GEOOwPm-E-Y42vMcRhUDLnDHO8xx-0sz9iXk-Pxu5HvDvjwlYjE0k_DqqwjXR1mpQrwfXwc1jG4zGGukkTLVAeBPExKsK5UFJQZXCuRV1EoZaXRtBXP2Y6ZG_2C8SoRVZBVgQJvMYItOxMKqQWDRMVRXUbJHhP9P1oox36Ph7BcFn2a40VBcihQDuAYFyCHPeavey2I_eU3v097YRXuWSLLtAB8_bLn_j_3fMnubx6eV2xn2XT6NbunrpaztnnjgPgDJ0DGdw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+response+of+carbon+monoxide+gas+sensors+using+a+highly+porous+network+of+ZnO+nanoparticles+decorated+on+3D+reduced+graphene+oxide&rft.jtitle=Applied+surface+science&rft.au=Ha%2C+Nguyen+Hai&rft.au=Thinh%2C+Dao+Duc&rft.au=Huong%2C+Nguyen+Thanh&rft.au=Phuong%2C+Nguyen+Huy&rft.date=2018-03-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=434&rft.spage=1048&rft.epage=1054&rft_id=info:doi/10.1016%2Fj.apsusc.2017.11.047&rft.externalDocID=S0169433217332919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon