Optimality conditions for sparse nonlinear programming

The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science China. Mathematics Ročník 60; číslo 5; s. 759 - 776
Hlavní autoři: Pan, LiLi, Xiu, NaiHua, Fan, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Science China Press 01.05.2017
Springer Nature B.V
Témata:
ISSN:1674-7283, 1869-1862
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain the decomposition properties of the Frechet, Mordukhovich and Clarke normal cones to the sparsity constrained feasible set. Based on the decomposition properties of the normal cones, we then present and analyze three classes of Karush-Kuhn- Tucker (KKT) conditions for the SNP. At last, we establish the second-order necessary optimality condition and sufficient optimality condition for the SNP.
Bibliografie:sparse nonlinear programming, constraint qualification, normal cone, first-order optimality con-dition, second-order optimality condition
11-5837/O1
The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain the decomposition properties of the Frechet, Mordukhovich and Clarke normal cones to the sparsity constrained feasible set. Based on the decomposition properties of the normal cones, we then present and analyze three classes of Karush-Kuhn- Tucker (KKT) conditions for the SNP. At last, we establish the second-order necessary optimality condition and sufficient optimality condition for the SNP.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-016-9010-x