A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input–output data filtering

Nonlinear systems exist widely in industrial processes. This paper studies the parameter estimation methods of establishing the mathematical models for a class of output nonlinear systems, whose output is nonlinear about the past outputs and linear about the inputs. We use an estimated noise transfe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Franklin Institute Ročník 354; číslo 15; s. 6938 - 6955
Hlavní autoři: Ding, Feng, Wang, Yanjiao, Dai, Jiyang, Li, Qishen, Chen, Qijia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elmsford Elsevier Ltd 01.10.2017
Elsevier Science Ltd
Témata:
ISSN:0016-0032, 1879-2693, 0016-0032
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nonlinear systems exist widely in industrial processes. This paper studies the parameter estimation methods of establishing the mathematical models for a class of output nonlinear systems, whose output is nonlinear about the past outputs and linear about the inputs. We use an estimated noise transfer function to filter the input–output data and obtain two identification models, one containing the parameters of the system model, and the other containing the parameters of the noise model. Based on the data filtering technique, a data filtering based recursive least squares algorithm is proposed. The simulation results show that the proposed algorithm can generate more accurate parameter estimates than the recursive generalized least squares algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2017.08.009