Symbolic Computation Applied to the Study of the Kernel of a Singular Integral Operator with Non-Carleman Shift and Conjugation

On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science Jg. 10; H. 3; S. 365 - 386
Hauptverfasser: Conceição, Ana C., Marreiros, Rui C., Pereira, José C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.09.2016
Springer Nature B.V
Schlagworte:
ISSN:1661-8270, 1661-8289
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. We show how the symbolic computation capabilities of the computer algebra system Mathematica can be used to explore the dimension of the kernel of the operator K . The analytical algorithm [ADimKer-NonCarleman] is presented; several nontrivial examples are given.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-016-0271-3