Symbolic Computation Applied to the Study of the Kernel of a Singular Integral Operator with Non-Carleman Shift and Conjugation

On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift opera...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics in computer science Ročník 10; číslo 3; s. 365 - 386
Hlavní autori: Conceição, Ana C., Marreiros, Rui C., Pereira, José C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2016
Springer Nature B.V
Predmet:
ISSN:1661-8270, 1661-8289
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. We show how the symbolic computation capabilities of the computer algebra system Mathematica can be used to explore the dimension of the kernel of the operator K . The analytical algorithm [ADimKer-NonCarleman] is presented; several nontrivial examples are given.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-016-0271-3