Symbolic Computation Applied to the Study of the Kernel of a Singular Integral Operator with Non-Carleman Shift and Conjugation

On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift opera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics in computer science Ročník 10; číslo 3; s. 365 - 386
Hlavní autoři: Conceição, Ana C., Marreiros, Rui C., Pereira, José C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.09.2016
Springer Nature B.V
Témata:
ISSN:1661-8270, 1661-8289
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. We show how the symbolic computation capabilities of the computer algebra system Mathematica can be used to explore the dimension of the kernel of the operator K . The analytical algorithm [ADimKer-NonCarleman] is presented; several nontrivial examples are given.
AbstractList On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. We show how the symbolic computation capabilities of the computer algebra system Mathematica can be used to explore the dimension of the kernel of the operator K. The analytical algorithm [ADimKer-NonCarleman] is presented; several nontrivial examples are given.
On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ± are the Cauchy projectors, A = ∑ j = 0 m a j U j , a , a j , j = 1 , m ¯ , are continuous functions on the unit circle T , U is the shift operator and C is the operator of complex conjugation. We show how the symbolic computation capabilities of the computer algebra system Mathematica can be used to explore the dimension of the kernel of the operator K . The analytical algorithm [ADimKer-NonCarleman] is presented; several nontrivial examples are given.
Author Marreiros, Rui C.
Conceição, Ana C.
Pereira, José C.
Author_xml – sequence: 1
  givenname: Ana C.
  surname: Conceição
  fullname: Conceição, Ana C.
  organization: Center for Functional Analysis, Linear Structures and Applications (CEAFEL), Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Algarve
– sequence: 2
  givenname: Rui C.
  surname: Marreiros
  fullname: Marreiros, Rui C.
  email: rmarrei@ualg.pt
  organization: Center for Functional Analysis, Linear Structures and Applications (CEAFEL), Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Algarve
– sequence: 3
  givenname: José C.
  surname: Pereira
  fullname: Pereira, José C.
  organization: Center for Functional Analysis, Linear Structures and Applications (CEAFEL), Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Center for Environmental and Sustainability Research (CENSE), Departamento de Engenharia Electrónica e Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6uZZLubHkvxo1j0sHoO2TRpU7bJms0iPfnX3XZFRNBDmAzMM-_wjNDAeacRugRyDYTkNw1AzrOEQPdoDgk7QUPIMkg45dPB9z8nZ2jUNFtCMgopDNFHsd-VvrIKz_2ubqOM1js8q-vK6hWOHseNxkVsV3vszbF51MHp6tBJXFi3bisZ8MJFvQ6yws-1DjL6gN9t3OAn75K5DJXeSYeLjTURS7fqoty2XR-jztGpkVWjL77qGL3e3b7MH5Ll8_1iPlsmiqUsJqxkpTSsTKeaSU4VlEYSMlFKg9TAGE1plqoUGKyYmkozNczkpSIpLwmlpmRjdNXvrYN_a3UTxda3wXWRAjgnPJ-kPO-moJ9SwTdN0EbUwe5k2Asg4uBZ9J5F51kcPAvWMfkvRtleYwzSVv-StCebLsWtdfhx05_QJ54blQw
CitedBy_id crossref_primary_10_3390_mca27010003
crossref_primary_10_1007_s11786_020_00463_3
Cites_doi 10.1016/S0022-1236(03)00113-7
10.1216/jiea/1181075913
10.1002/1522-2616(200106)226:1<129::AID-MANA129>3.0.CO;2-R
10.1007/978-3-0348-0346-5_10
10.1007/s10444-012-9279-7
10.14510/lm-ns.v34i2.1292
10.1002/mana.19911510115
10.1007/978-3-0348-0816-3_11
10.1216/jiea/1020254809
10.7153/oam-09-27
10.1007/978-3-0348-8647-5
10.1007/978-3-0348-6266-0
10.1007/978-94-011-1180-5
10.1007/978-3-642-61631-0
10.1007/978-3-0348-8003-9_1
10.1007/978-3-0346-0158-0_6
10.1007/978-3-0348-5492-4
10.1007/978-94-011-4363-9
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11786-016-0271-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
EndPage 386
ExternalDocumentID 10_1007_s11786_016_0271_3
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c343t-3b3baf3b49e3a82c1bfa005cce1ae13324264c4131d3c9af9f3f7bc048b022fb3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382868300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-8270
IngestDate Thu Sep 25 00:56:33 EDT 2025
Tue Nov 18 21:43:55 EST 2025
Sat Nov 29 06:37:37 EST 2025
Fri Feb 21 02:37:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Non-Carleman shift
68W30
Factorization algorithms
Wolfram
47A68
Secondary 45P05
Conjugation
Kernel dimension
Symbolic computation
Primary 47G10
Singular integral operators
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-3b3baf3b49e3a82c1bfa005cce1ae13324264c4131d3c9af9f3f7bc048b022fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10400.1/9303
PQID 1880875487
PQPubID 2044127
PageCount 22
ParticipantIDs proquest_journals_1880875487
crossref_primary_10_1007_s11786_016_0271_3
crossref_citationtrail_10_1007_s11786_016_0271_3
springer_journals_10_1007_s11786_016_0271_3
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Conceição, Marreiros (CR6) 2015; 9
CR2
Kravchenko, Marreiros, Bastos, Lebre, Samko, Spitkovsky (CR14) 2014
CR4
Kravchenko, Lebre, Rodriguez (CR12) 2001; 13
Conceição, Pereira (CR7) 2014; 34
CR5
Litvinchuk (CR16) 1977
Spitkovskii, Tashbaev (CR21) 1991; 151
CR19
Kravchenko, Lebre, Litvinchuk (CR11) 2001; 226
CR18
CR17
CR9
Vekua (CR23) 1970
Ehrhart (CR8) 2004; 208
CR13
Baturev, Kravchenko, Litvinchuk (CR1) 1996; 8
CR10
CR20
Vekua (CR22) 1988
Conceição, Kravchenko, Pereira (CR3) 2013; 39
Kravchenko, Marreiros, Rodriguez, Ball, Curto, Grudsky, Helton, Quiroga-Barranco, Vasilevski (CR15) 2012
271_CR2
271_CR18
271_CR17
271_CR4
271_CR5
271_CR19
IM Spitkovskii (271_CR21) 1991; 151
271_CR9
271_CR10
271_CR20
271_CR13
VG Kravchenko (271_CR14) 2014
VG Kravchenko (271_CR12) 2001; 13
AC Conceição (271_CR7) 2014; 34
AC Conceição (271_CR3) 2013; 39
IN Vekua (271_CR22) 1988
VG Kravchenko (271_CR11) 2001; 226
VG Kravchenko (271_CR15) 2012
NP Vekua (271_CR23) 1970
T Ehrhart (271_CR8) 2004; 208
GS Litvinchuk (271_CR16) 1977
AA Baturev (271_CR1) 1996; 8
AC Conceição (271_CR6) 2015; 9
References_xml – ident: CR19
– volume: 208
  start-page: 64
  issue: 1
  year: 2004
  end-page: 106
  ident: CR8
  article-title: Invertibility theory for Toeplitz plus Hankel operators and singular integral operators with flip
  publication-title: J. Funct. Anal.
  doi: 10.1016/S0022-1236(03)00113-7
– year: 1977
  ident: CR16
  publication-title: Boundary value problems and singular integral equations with shift
– ident: CR18
– year: 1970
  ident: CR23
  publication-title: Systems of singular integral equations (in russian)
– volume: 8
  start-page: 1
  issue: 1
  year: 1996
  end-page: 17
  ident: CR1
  article-title: Approximate methods for singular integral equations with a non-Carleman shift
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/jiea/1181075913
– volume: 226
  start-page: 129
  year: 2001
  end-page: 151
  ident: CR11
  article-title: Spectrum problems for singular integral operators with Carleman shift
  publication-title: Math. Nachr.
  doi: 10.1002/1522-2616(200106)226:1<129::AID-MANA129>3.0.CO;2-R
– start-page: 163
  year: 2012
  end-page: 178
  ident: CR15
  article-title: An estimate for the number of solutions of an homogeneous generalized Riemann boundary value problem with shift
  publication-title: Recent progress in operator theory and its applications, operator theory: advances and applications
  doi: 10.1007/978-3-0348-0346-5_10
– ident: CR4
– ident: CR2
– volume: 39
  start-page: 273
  issue: 2
  year: 2013
  end-page: 288
  ident: CR3
  article-title: Computing some classes of Cauchy type singular integrals with Mathematica software
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-012-9279-7
– ident: CR17
– volume: 34
  start-page: 23
  issue: 2
  year: 2014
  end-page: 58
  ident: CR7
  article-title: Exploring the spectra of some classes of paired singular integral operators: the scalar and matrix cases
  publication-title: Libertas Mathematica (new series).
  doi: 10.14510/lm-ns.v34i2.1292
– ident: CR13
– volume: 151
  start-page: 241
  year: 1991
  end-page: 261
  ident: CR21
  article-title: Factorization of Certain Piecewise Constant Matrix Functions and its Applications
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19911510115
– ident: CR10
– ident: CR9
– year: 1988
  ident: CR22
  publication-title: Generalized analytic functions (in russian)
– start-page: 197
  year: 2014
  end-page: 220
  ident: CR14
  article-title: On the dimension of the kernel of a singular integral operator with shift
  publication-title: Operator theory, operator algebras and applications, operator theory: advances and applications
  doi: 10.1007/978-3-0348-0816-3_11
– ident: CR5
– volume: 13
  start-page: 339
  issue: 4
  year: 2001
  end-page: 383
  ident: CR12
  article-title: Factorization of singular integral operators with a Carleman shift and spectral problems
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/jiea/1020254809
– ident: CR20
– volume: 9
  start-page: 433
  issue: 2
  year: 2015
  end-page: 456
  ident: CR6
  article-title: On the kernel of a singular integral operator with non-Carleman shift and conjugation
  publication-title: Oper. Matrices.
  doi: 10.7153/oam-09-27
– ident: 271_CR19
– volume: 9
  start-page: 433
  issue: 2
  year: 2015
  ident: 271_CR6
  publication-title: Oper. Matrices.
  doi: 10.7153/oam-09-27
– ident: 271_CR10
  doi: 10.1007/978-3-0348-8647-5
– ident: 271_CR18
  doi: 10.1007/978-3-0348-6266-0
– volume-title: Generalized analytic functions (in russian)
  year: 1988
  ident: 271_CR22
– ident: 271_CR4
– start-page: 197
  volume-title: Operator theory, operator algebras and applications, operator theory: advances and applications
  year: 2014
  ident: 271_CR14
  doi: 10.1007/978-3-0348-0816-3_11
– volume: 151
  start-page: 241
  year: 1991
  ident: 271_CR21
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19911510115
– volume: 34
  start-page: 23
  issue: 2
  year: 2014
  ident: 271_CR7
  publication-title: Libertas Mathematica (new series).
  doi: 10.14510/lm-ns.v34i2.1292
– volume: 39
  start-page: 273
  issue: 2
  year: 2013
  ident: 271_CR3
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-012-9279-7
– volume-title: Boundary value problems and singular integral equations with shift
  year: 1977
  ident: 271_CR16
– volume-title: Systems of singular integral equations (in russian)
  year: 1970
  ident: 271_CR23
– ident: 271_CR13
  doi: 10.1007/978-94-011-1180-5
– volume: 208
  start-page: 64
  issue: 1
  year: 2004
  ident: 271_CR8
  publication-title: J. Funct. Anal.
  doi: 10.1016/S0022-1236(03)00113-7
– ident: 271_CR20
  doi: 10.1007/978-3-642-61631-0
– volume: 226
  start-page: 129
  year: 2001
  ident: 271_CR11
  publication-title: Math. Nachr.
  doi: 10.1002/1522-2616(200106)226:1<129::AID-MANA129>3.0.CO;2-R
– ident: 271_CR9
  doi: 10.1007/978-3-0348-8003-9_1
– start-page: 163
  volume-title: Recent progress in operator theory and its applications, operator theory: advances and applications
  year: 2012
  ident: 271_CR15
  doi: 10.1007/978-3-0348-0346-5_10
– ident: 271_CR5
  doi: 10.1007/978-3-0346-0158-0_6
– volume: 8
  start-page: 1
  issue: 1
  year: 1996
  ident: 271_CR1
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/jiea/1181075913
– ident: 271_CR2
  doi: 10.1007/978-3-0348-5492-4
– volume: 13
  start-page: 339
  issue: 4
  year: 2001
  ident: 271_CR12
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/jiea/1020254809
– ident: 271_CR17
  doi: 10.1007/978-94-011-4363-9
SSID ssj0062141
Score 2.0141041
Snippet On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ±...
On the Hilbert space L ~ 2 ( T ) the singular integral operator with non-Carleman shift and conjugation K = P + + ( a I + A C ) P - is considered, where P ±...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 365
SubjectTerms Algorithms
Computation
Computer algebra
Computer Science
Conjugation
Hilbert space
Mathematics
Mathematics and Statistics
Operators (mathematics)
Projectors
Title Symbolic Computation Applied to the Study of the Kernel of a Singular Integral Operator with Non-Carleman Shift and Conjugation
URI https://link.springer.com/article/10.1007/s11786-016-0271-3
https://www.proquest.com/docview/1880875487
Volume 10
WOSCitedRecordID wos000382868300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-8289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062141
  issn: 1661-8270
  databaseCode: RSV
  dateStart: 20071201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAGzEYKAdOoEhNE9bmiCYmEDAQA8StStKEh0aHtoK0E3-dJG03QIAER6tuEsVJbMfOZ4Adq0W5ZIHBURpEmDWsu8MNYTg06b5MY8JMAZJ0GrXb8e0tvyjfcQ-qbPcqJOlP6vFjNxLFzvt1SbMRwXQSpq22i129hsvOTXX8NsKiXCWxigfHYTQKZX7XxGdlNLYwvwRFva5pLfxrlIswX5qW6KBYC0swobNlWKjKNqByFy_D3NkIqnWwAm-d4ZN04MCo4PSSQqVxivIesrzIZRsOUc944kT3M911lEAdOzaXyIqOC9iJLjp_1j5yj9wNL2r3Mtx0Af0nkaHO_YPJkchS21X2-HLnu1qF69bhVfMIl1UZsKKM5phKKoWhknFNRRwqIo2wW1kpTYS2Hq-3sZTVjSSligvDDTWRVPakkNZeMJKuwVTWy_Q6oDjgsmGsA7VPOZOKCpYSwWgUKEtzpmoQVOJJVAlZ7ipndJMx2LKb7sSlqbnpTmgNdke_PBd4Hb8x1yuZJ-XWHSQOoM46cdaRq8FeJeMPn39qbONP3JswG_pF4rLV6jCV91_0Fsyo1_xh0N_2K_odtc7vWA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwLa7PHDwpgaaJ2-Yooiiuq7gq3kqSJrqydmW3Cp786yZpu6uigh6HTpOQSTIzmck3ANtWi3LJAoOjNIgwq1t3hxvCcGjSPZnGhJkCJKkRNZvx7S2_KN9x96ts9yok6U_q4WM3EsXO-3VJsxHBdBTGmVVYDjD_snVTHb_1sChXSaziwXEYDUKZ3zXxWRkNLcwvQVGva45m_zXKOZgpTUu0X6yFeRjR2QLMVmUbULmLF2D6bADV2l-Et9bro3TgwKjg9JJCpXGK8i6yvMhlG76irvHEqe5luuMogVp2bC6RFZ0UsBMddP6kfeQeuRte1Oxm-MAF9B9Fhlr3bZMjkaW2q-zh-c53tQTXR4dXB8e4rMqAFWU0x1RSKQyVjGsq4lARaYTdykppIrT1eL2NpaxuJClVXBhuqImksieFtPaCkXQZxrJuplcAxQGXdWMdqD3KmVRUsJQIRqNAWZozVYOgEk-iSshyVzmjkwzBlt10Jy5NzU13QmuwM_jlqcDr-I15vZJ5Um7dfuIA6qwTZx25GuxWMv7w-afGVv_EvQWTx1dnjaRx0jxdg6nQLxiXubYOY3nvWW_AhHrJ2_3epl_d7_U48jw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61aVXBgVdBpNDiAycqi_XaZNfHCoiKoClS2orbyvbaEBScKNkgceKv49lH0lalUtWjtbP2ymN7ZnY-fwOwH6yo1CJyNMmjhIpOCHekY4LGLj_SecqEq0iSLpJeL726kpd1ndNpg3ZvUpLVnQZkafLF4Th3h4uLbyxJMRJGAG3CKH8JrwTi6DFc7_9ojuJOXJWuZMEI0TRO5mnNP3Xxq2FaeJu_JUhLu9Nd_e8vXoOV2uUkn6o1sg4vrN-A1aacA6l39wYsf5lTuE7fwmP_4U4jaTCpJEsNktppJcWIBFmCKMQHMnJl49xOvB1iS5F--E4EuJKzio5iSL6ObZnRJ_jnl_RGnh5jov9OedK_GbiCKJ-Hofzt7LocahO-d0-_HX-mdbUGarjgBeWaa-W4FtJylcaGaafCFjfGMmVDJFz6XibYTJZzI5WTjrtEm3CC6OBHOM23oOVH3m4DSSOpOy4EVkdcCm24EjlTgieRCW0pTBuiRlWZqanMsaLGMFuQMON0Zwhfw-nOeBsO5q-MKx6PvwnvNvrP6i09zZC4LgR3IcBrw8dG3z89fq6zd_8kvQdvLk-62cVZ73wHluJyvSCgbRdaxWRm38Nrc18MppMP5UJ_AjjD-yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbolic+Computation+Applied+to+the+Study+of+the+Kernel+of+a+Singular+Integral+Operator+with+Non-Carleman+Shift+and+Conjugation&rft.jtitle=Mathematics+in+computer+science&rft.au=Concei%C3%A7%C3%A3o%2C+Ana+C&rft.au=Marreiros%2C+Rui+C&rft.au=Pereira%2C+Jos%C3%A9+C&rft.date=2016-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=10&rft.issue=3&rft.spage=365&rft.epage=386&rft_id=info:doi/10.1007%2Fs11786-016-0271-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon