New Improvements of the Jensen–Mercer Inequality for Strongly Convex Functions with Applications

In this paper, we use the generalized version of convex functions, known as strongly convex functions, to derive improvements to the Jensen–Mercer inequality. We achieve these improvements through the newly discovered characterizations of strongly convex functions, along with some previously known r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Axioms Ročník 13; číslo 8; s. 553
Hlavní autoři: Adil Khan, Muhammad, Ivelić Bradanović, Slavica, Mahmoud, Haitham Abbas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2024
Témata:
ISSN:2075-1680, 2075-1680
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we use the generalized version of convex functions, known as strongly convex functions, to derive improvements to the Jensen–Mercer inequality. We achieve these improvements through the newly discovered characterizations of strongly convex functions, along with some previously known results about strongly convex functions. We are also focused on important applications of the derived results in information theory, deducing estimates for χ-divergence, Kullback–Leibler divergence, Hellinger distance, Bhattacharya distance, Jeffreys distance, and Jensen–Shannon divergence. Additionally, we prove some applications to Mercer-type power means at the end.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13080553