Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms

We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorith...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics Vol. 52; no. 12; pp. 2321 - 2353
Main Author: Dai, Wanyang
Format: Journal Article
Language:English
Published: England Taylor & Francis 10.09.2025
Taylor & Francis Ltd
Subjects:
ISSN:0266-4763, 1360-0532
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation.
AbstractList We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation.
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation.We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation.
Author Dai, Wanyang
Author_xml – sequence: 1
  givenname: Wanyang
  surname: Dai
  fullname: Dai, Wanyang
  email: nan5lu8@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40927349$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLcLHwFkCQn1kmXif8neqFalIFXlAmfLiSeti2MvdkLVb4_T3XLgwMkjz2-eZt47IychBiTkbQ2bGlr4CEwp0Si-YcDkhgkF0KgXZFVzBRVIzk7IamGqBTolZznfA0BbS_6KnArYsoaL7Yr8vMKAdJwnM7kYKObJjU9lpr-dWRqz8dSFIabDPzXB0ssHLEA24967cEs7k9HS3c0N_UBH09-5IunRpLA0jb-NyU13Y35NXg7GZ3xzfNfkx-fL77sv1fW3q6-7i-uq54JNlVWCYd1jp6Afhm3fWWCtGThYJhuLja0lqpZza-vCCCWMsluGHbJG2nI4X5Pzg-4-xV9zOUmPLvfovQkY56w5E60QbVO8WJP3_6D3cU6hbFco2YIUsoFCvTtSczei1ftUTEqP-tnGAsgD0KeYc8LhL1KDXuLSz3HpJS59jKvMfTrMHQ1-iMlbPZlHH9OQTOhd2eP_En8AnZWbag
Cites_doi 10.1016/j.jnca.2022.103413
10.1089/crispr.2022.0002
10.2307/1426228
10.4310/CMS.2018.v16.n3.a4
10.1080/13873954.2019.1677725
10.1162/neco.1989.1.4.541
10.3934/math.2024909
10.1371/journal.pone.0259101
10.1038/s41587-019-0137-8
10.1126/science.abn2100
10.1016/j.ymthe.2022.04.010
10.1016/0040-5809(72)90035-4
10.1093/bioinformatics/btac428
10.1126/science.adg7492
10.1016/j.biomaterials.2022.121510
10.1080/03610918.2021.1970184
10.1109/ISIMP.2004.1434023
10.1186/s12859-023-05246-8
10.1016/j.csbj.2020.06.035
10.1007/s00365-009-9054-2
10.1016/j.camwa.2022.05.019
10.1016/j.cor.2020.104932
10.1214/20-AAP1600
10.1038/nature24270
10.1214/22-AAP1806
10.1038/nm.2471
10.1007/s11128-023-03851-3
10.1007/s12351-022-00723-z
10.1214/18-AAP1433
10.1109/ACCESS.2020.3010896
10.1126/science.add2187
10.1038/s41586-021-03819-2
10.1038/s41586-019-1314-0
10.1126/scitranslmed.aan6446
10.1093/bioinformatics/btaa248
10.1126/science.add1964
10.1007/s13244-018-0639-9
10.1016/j.biopha.2022.112787
10.1007/978-3-642-61859-8
10.1080/13873954.2018.1516677
10.1038/d41586-024-01383-z
10.3389/fbioe.2024.1371596
ContentType Journal Article
Copyright 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
2025 Informa UK Limited, trading as Taylor & Francis Group.
2025 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
– notice: 2025 Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2025 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1080/02664763.2025.2460076
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Aerospace Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 2353
ExternalDocumentID 40927349
10_1080_02664763_2025_2460076
2460076
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11771006
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBR
EBS
EBU
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
07G
1TA
8C1
8FE
8FG
8G5
AAIKQ
AAKBW
ABJCF
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
AEMOZ
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AHQJS
AI.
ALCKM
AMEWO
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
COF
CRFIH
DMQIW
DWIFK
DWQXO
EBE
EBO
ECR
EJD
EMK
EPL
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K1G
K6V
K7-
L6V
M0C
M2O
M7S
NHB
NPM
NUSFT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
QCRFL
RPM
TAQ
TFMCV
TH9
UB9
UKHRP
UU8
V3K
V4Q
VH1
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c342t-d642e1ceb60cff9cbd028af30d257de7d15e6833dd1eb6464a6d92ebe275d5323
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001411789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4763
IngestDate Thu Oct 02 21:28:34 EDT 2025
Sat Oct 11 05:41:08 EDT 2025
Thu Sep 11 02:51:55 EDT 2025
Sat Nov 29 07:35:20 EST 2025
Mon Oct 20 23:46:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords multi-input multi-output (MIMO) mutual information
Ewens sampling
stochastic gradient
Gene mutation rate
convolutional neural network (CNN)
machine learning
Language English
License 2025 Informa UK Limited, trading as Taylor & Francis Group.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-d642e1ceb60cff9cbd028af30d257de7d15e6833dd1eb6464a6d92ebe275d5323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40927349
PQID 3258054570
PQPubID 32901
PageCount 33
ParticipantIDs proquest_miscellaneous_3248448715
pubmed_primary_40927349
crossref_primary_10_1080_02664763_2025_2460076
proquest_journals_3258054570
informaworld_taylorfrancis_310_1080_02664763_2025_2460076
PublicationCentury 2000
PublicationDate 2025-09-10
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_16_1
e_1_3_3_35_1
Peluchetti S. (e_1_3_3_41_1) 2023; 24
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
Nelson D.L. (e_1_3_3_37_1) 2021
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
Dai W. (e_1_3_3_11_1) 2018; 16
Luenberger D.G. (e_1_3_3_36_1) 1984
e_1_3_3_7_1
e_1_3_3_9_1
Vaswani A. (e_1_3_3_49_1) 2017; 30
e_1_3_3_25_1
e_1_3_3_48_1
Pardi N. (e_1_3_3_39_1) 2018; 17
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_6_1
e_1_3_3_8_1
Kolmogorov A.N. (e_1_3_3_29_1) 1957; 114
e_1_3_3_28_1
e_1_3_3_24_1
Kratsios A. (e_1_3_3_30_1) 2023; 24
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_23_1
  doi: 10.1016/j.jnca.2022.103413
– ident: e_1_3_3_33_1
– volume: 114
  start-page: 953
  year: 1957
  ident: e_1_3_3_29_1
  article-title: On the representation of continuous functions of several variables as superpositions of continuous functions of a smaller number of variables
  publication-title: Dokl. Akad. Nauk. SSSR
– ident: e_1_3_3_31_1
  doi: 10.1089/crispr.2022.0002
– ident: e_1_3_3_51_1
  doi: 10.2307/1426228
– volume: 16
  start-page: 659
  year: 2018
  ident: e_1_3_3_11_1
  article-title: A unified system of FB-SDEs with Lévy jumps and double completely- S skew reflections
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2018.v16.n3.a4
– ident: e_1_3_3_12_1
  doi: 10.1080/13873954.2019.1677725
– ident: e_1_3_3_32_1
  doi: 10.1162/neco.1989.1.4.541
– ident: e_1_3_3_18_1
  doi: 10.3934/math.2024909
– ident: e_1_3_3_21_1
  doi: 10.1371/journal.pone.0259101
– ident: e_1_3_3_4_1
  doi: 10.1038/s41587-019-0137-8
– volume: 24
  start-page: 1
  year: 2023
  ident: e_1_3_3_30_1
  article-title: Small transformers compute universal metric embeddings
  publication-title: J. Mach. Learn. Res.
– volume-title: Lehninger Principles of Biochemistry
  year: 2021
  ident: e_1_3_3_37_1
– ident: e_1_3_3_46_1
– ident: e_1_3_3_50_1
  doi: 10.1126/science.abn2100
– ident: e_1_3_3_57_1
  doi: 10.1016/j.ymthe.2022.04.010
– volume: 24
  start-page: 1
  year: 2023
  ident: e_1_3_3_41_1
  article-title: Diffusion bridge mixture transports, Schr o¨dinger bridge problems and generative modeling
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_3_20_1
  doi: 10.1016/0040-5809(72)90035-4
– ident: e_1_3_3_28_1
  doi: 10.1093/bioinformatics/btac428
– ident: e_1_3_3_8_1
  doi: 10.1126/science.adg7492
– ident: e_1_3_3_25_1
  doi: 10.1016/j.biomaterials.2022.121510
– ident: e_1_3_3_35_1
  doi: 10.1080/03610918.2021.1970184
– volume: 30
  start-page: 5998
  year: 2017
  ident: e_1_3_3_49_1
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_3_42_1
  doi: 10.1109/ISIMP.2004.1434023
– ident: e_1_3_3_14_1
– ident: e_1_3_3_26_1
  doi: 10.1186/s12859-023-05246-8
– ident: e_1_3_3_45_1
  doi: 10.1016/j.csbj.2020.06.035
– ident: e_1_3_3_5_1
  doi: 10.1007/s00365-009-9054-2
– ident: e_1_3_3_15_1
  doi: 10.1016/j.camwa.2022.05.019
– ident: e_1_3_3_3_1
  doi: 10.1016/j.cor.2020.104932
– ident: e_1_3_3_22_1
  doi: 10.1214/20-AAP1600
– ident: e_1_3_3_44_1
  doi: 10.1038/nature24270
– ident: e_1_3_3_24_1
  doi: 10.1214/22-AAP1806
– ident: e_1_3_3_48_1
  doi: 10.1038/nm.2471
– ident: e_1_3_3_13_1
– ident: e_1_3_3_17_1
  doi: 10.1007/s11128-023-03851-3
– ident: e_1_3_3_16_1
  doi: 10.1007/s12351-022-00723-z
– ident: e_1_3_3_47_1
  doi: 10.1214/18-AAP1433
– ident: e_1_3_3_2_1
  doi: 10.1109/ACCESS.2020.3010896
– ident: e_1_3_3_19_1
  doi: 10.1126/science.add2187
– ident: e_1_3_3_27_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_3_3_58_1
  doi: 10.1038/s41586-019-1314-0
– ident: e_1_3_3_38_1
  doi: 10.1126/scitranslmed.aan6446
– ident: e_1_3_3_43_1
  doi: 10.1093/bioinformatics/btaa248
– ident: e_1_3_3_9_1
– ident: e_1_3_3_52_1
  doi: 10.1126/science.add1964
– ident: e_1_3_3_53_1
  doi: 10.1007/s13244-018-0639-9
– volume-title: Linear and Nonlinear Programming
  year: 1984
  ident: e_1_3_3_36_1
– ident: e_1_3_3_54_1
  doi: 10.1016/j.biopha.2022.112787
– ident: e_1_3_3_6_1
– volume: 17
  start-page: 261
  year: 2018
  ident: e_1_3_3_39_1
  article-title: mRNA vaccines – a new era in vaccinology
  publication-title: Nat. Rev.
– ident: e_1_3_3_55_1
  doi: 10.1007/978-3-642-61859-8
– ident: e_1_3_3_34_1
– ident: e_1_3_3_10_1
  doi: 10.1080/13873954.2018.1516677
– ident: e_1_3_3_7_1
  doi: 10.1038/d41586-024-01383-z
– ident: e_1_3_3_40_1
  doi: 10.3389/fbioe.2024.1371596
– ident: e_1_3_3_56_1
SSID ssj0008153
Score 2.3906367
Snippet We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2321
SubjectTerms Algorithms
Artificial neural networks
convolutional neural network (CNN)
Ewens sampling
Gene mutation rate
Gene sequencing
Genetic modification
Kuhn-Tucker method
Machine learning
multi-input multi-output (MIMO) mutual information
Mutation
Optimization
Optimization techniques
Proteins
Sampling
stochastic gradient
Title Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2025.2460076
https://www.ncbi.nlm.nih.gov/pubmed/40927349
https://www.proquest.com/docview/3258054570
https://www.proquest.com/docview/3248448715
Volume 52
WOSCitedRecordID wos001411789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1360-0532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008153
  issn: 0266-4763
  databaseCode: TFW
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4lAOFMproVRGQtxS_EpsH6uqqx5gxaGIvUWO7SxV2Sza7Ja_z0zsrOih4kCPkR-yPTOe-eLxZ0I-BGWl0Q0rhAUxqJbZotGBFZEFbZ00QrPhovBnPZuZ-dx-zdmEfU6rRAzdJqKIYa9G43ZNP2bEfQLYUCmwC0B3ojwRCinWkXQbXD-a5uX0-24vNjzxUEKLApuMd3ju6uWWd7rFXXp3BDp4ounBPczhKXmSw1B6mvTmGXkQu0Py-MuOw7U_JPsYhyYa5-fkGump6XKbDu4pUnOkO489vblyWLCF7vJMhiowMnr-G0Ay7R1mrXcLih4z0LPZjH6kyyGJM9L8asWCup-L1fpq82PZvyDfpueXZxdFfqeh8FKJTREAw0TuY1Mx37bWNwGCFtdKFmA_CFEHXsbKSBkChzqqUq4KVoD2CF2GUgr5kux1qy6-JrTl2kvrReVKpwKLyH5vGm9NGwFaeT4hJ6N86l-JjqPmI8tpXtIal7TOSzoh9m8p1pvhP0ibHi2p5T_aHo0ir7NlQxNRGghzS80m5P2uGGwSD1pcF1dbrKMMwF7Nywl5lVRlN1rA08goZN_8x8Dekn38xLQVzo7I3ma9je_II38DWrE-Jg_13BwPdvAHVX8C5g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgIDEeBowBNwYECfHWkSZNkzyiaachbn06xN6qNkmPaVwP3cf497Gb9rQ9TDzAc-Ioie3YTuxfAD74zEqja54Ii2zIGm6TWnueBO61raQRmneFwhNdFObiwt6shaG0SoqhmwgU0Z3VpNx0GT2kxH3CuCHPUDEwvBPqWGSEsZ7fhwcKbS3h50_H37ensUkjEiWSJEQzVPHcNcwt-3QLvfRuH7SzReMn_2MVT2Gv90TZ5yg6z-BeaPfh8fkWxnW1D7vkikYk5-dwRQjVbL6Jb_eM0Dli2eOKXV9W1LDB4fqldF1wauz0N8bJbFVR4no7Y2Q0PTspCvaRzbs8zsD6jytmrPo5Wywv1z_mqwP4Nj6dnpwl_VcNiZOZWCcew5iQulDn3DWNdbVHv6VqJPd4JPigfapCbqT0PsU-WZ5VubcCBUho5ZUU8gXstIs2vALWpNpJ60ReqSrzPBAAvqmdNU3A6MqlIzgeGFT-iogcZToAnfZbWtKWlv2WjsDeZGO57q5CmvhvSSn_Qns08LzslRtJhDLo6SrNR_B-24xqSW8tVRsWG-qTGYx8dapG8DLKyna2GFITqJA9_IeJvYNHZ9PzSTn5Unx9DbvURFksKT-CnfVyE97AQ3eNErJ826nDH5ubBig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagceBRaFgoYCXFL69hJbB9R6QpEiXooorfI8WOpYLPVZrf8fcaxs6KHigOc7bFsz4w9nz3-DPDWFopL0dKMKVRD4anKWmFp5qgVSnPJBB0eCp-Iupbn5-o0ZRP2Ka0yYGgfiSKGtTo496X1Y0bcIcKGqkC_QHTHygNWBIr16jbcwdC5CkZ-Nv22WYxlHokoUSQLMuMjnpuaubY9XSMvvTkEHbai6cP_MIhH8CDFoeR9NJzHcMt1O3D_y4bEtd-B7RCIRh7nJ_Aj8FOT-Tre3JPAzREfPfbk6kKHgjU2l0YyVMGekeNfiJJJr0PaejcjYcu05KiuyTsyH7I4HUnfVsyI_jlbLC9W3-f9U_g6PT47-piljxoywwu2yiyCGJcb11bUeK9MazFq0Z5TiwuCdcLmpask59bmWKeoCl1ZxdB8mChtyRnfha1u0blnQHwuDFeGVbrUhaUu0N_L1ijpHWIrk0_gYNRPcxn5OJp8pDlNU9qEKW3SlE5A_anFZjUchPj4a0nD_yK7P6q8Sa6NIqyUGOeWgk7gzaYYnTLctOjOLdahTiER94q8nMBeNJVNbxFQB0oh9fwfOvYa7p1-mDYnn-rPL2A7lIQUlpzuw9ZquXYv4a65QgNZvhqc4Td9gQTa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+mutation+estimations+via+mutual+information+and+Ewens+sampling+based+CNN+%26+machine+learning+algorithms&rft.jtitle=Journal+of+applied+statistics&rft.au=Dai%2C+Wanyang&rft.date=2025-09-10&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=52&rft.issue=12&rft.spage=2321&rft.epage=2353&rft_id=info:doi/10.1080%2F02664763.2025.2460076&rft.externalDocID=2460076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon