Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorith...
Saved in:
| Published in: | Journal of applied statistics Vol. 52; no. 12; pp. 2321 - 2353 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Taylor & Francis
10.09.2025
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0266-4763, 1360-0532 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation. |
|---|---|
| AbstractList | We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation. We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation.We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures. The core of the CNN and machine learning approach is to address a two-stage optimization problem to balance gene mutation rates during protein production. To wit, we try to optimally coordinate the consistency between the given input DNA sequences and the given (or optimally computed) target ones through controlling their intermediate gene mutation rates. The purposes in doing so are aimed to conduct gene editing and protein structure prediction. For example, after the gene mutation rates are estimated, the computing complexity of protein structure prediction will be reduced to a reasonable degree. Our developed CNN numerical optimization scheme consists of two newly designed machine learning algorithms. The stochastic gradients for the two algorithms are designed according to the Kuhn-Tucker conditions with boundary constraints and with the support of Ewens sampling, multi-input multi-output (MIMO) mutual information, and codon optimization techniques. The associated learning rate bounds are explicitly derived from the method and the two algorithms are numerically implemented. The convergence and optimality of the algorithms are mathematically proved. To illustrate the usage of our study, we also conduct a real-world data implementation. |
| Author | Dai, Wanyang |
| Author_xml | – sequence: 1 givenname: Wanyang surname: Dai fullname: Dai, Wanyang email: nan5lu8@nju.edu.cn organization: Nanjing University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40927349$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URLcLHwFkCQn1kmXif8neqFalIFXlAmfLiSeti2MvdkLVb4_T3XLgwMkjz2-eZt47IychBiTkbQ2bGlr4CEwp0Si-YcDkhgkF0KgXZFVzBRVIzk7IamGqBTolZznfA0BbS_6KnArYsoaL7Yr8vMKAdJwnM7kYKObJjU9lpr-dWRqz8dSFIabDPzXB0ssHLEA24967cEs7k9HS3c0N_UBH09-5IunRpLA0jb-NyU13Y35NXg7GZ3xzfNfkx-fL77sv1fW3q6-7i-uq54JNlVWCYd1jp6Afhm3fWWCtGThYJhuLja0lqpZza-vCCCWMsluGHbJG2nI4X5Pzg-4-xV9zOUmPLvfovQkY56w5E60QbVO8WJP3_6D3cU6hbFco2YIUsoFCvTtSczei1ftUTEqP-tnGAsgD0KeYc8LhL1KDXuLSz3HpJS59jKvMfTrMHQ1-iMlbPZlHH9OQTOhd2eP_En8AnZWbag |
| Cites_doi | 10.1016/j.jnca.2022.103413 10.1089/crispr.2022.0002 10.2307/1426228 10.4310/CMS.2018.v16.n3.a4 10.1080/13873954.2019.1677725 10.1162/neco.1989.1.4.541 10.3934/math.2024909 10.1371/journal.pone.0259101 10.1038/s41587-019-0137-8 10.1126/science.abn2100 10.1016/j.ymthe.2022.04.010 10.1016/0040-5809(72)90035-4 10.1093/bioinformatics/btac428 10.1126/science.adg7492 10.1016/j.biomaterials.2022.121510 10.1080/03610918.2021.1970184 10.1109/ISIMP.2004.1434023 10.1186/s12859-023-05246-8 10.1016/j.csbj.2020.06.035 10.1007/s00365-009-9054-2 10.1016/j.camwa.2022.05.019 10.1016/j.cor.2020.104932 10.1214/20-AAP1600 10.1038/nature24270 10.1214/22-AAP1806 10.1038/nm.2471 10.1007/s11128-023-03851-3 10.1007/s12351-022-00723-z 10.1214/18-AAP1433 10.1109/ACCESS.2020.3010896 10.1126/science.add2187 10.1038/s41586-021-03819-2 10.1038/s41586-019-1314-0 10.1126/scitranslmed.aan6446 10.1093/bioinformatics/btaa248 10.1126/science.add1964 10.1007/s13244-018-0639-9 10.1016/j.biopha.2022.112787 10.1007/978-3-642-61859-8 10.1080/13873954.2018.1516677 10.1038/d41586-024-01383-z 10.3389/fbioe.2024.1371596 |
| ContentType | Journal Article |
| Copyright | 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 2025 Informa UK Limited, trading as Taylor & Francis Group. 2025 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group. – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1080/02664763.2025.2460076 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1360-0532 |
| EndPage | 2353 |
| ExternalDocumentID | 40927349 10_1080_02664763_2025_2460076 2460076 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11771006 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBR EBS EBU E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K60 K6~ KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQBIZ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 07G 1TA 8C1 8FE 8FG 8G5 AAIKQ AAKBW ABJCF ABUWG ACAGQ ACGEE ACTCW ADBBV AEMOZ AEUMN AFKRA AGCQS AGLEN AGROQ AHMOU AHQJS AI. ALCKM AMEWO AMVHM AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU COF CRFIH DMQIW DWIFK DWQXO EBE EBO ECR EJD EMK EPL FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K1G K6V K7- L6V M0C M2O M7S NHB NPM NUSFT P62 PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB PQQKQ PRG PROAC PTHSS PUEGO QCRFL RPM TAQ TFMCV TH9 UB9 UKHRP UU8 V3K V4Q VH1 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c342t-d642e1ceb60cff9cbd028af30d257de7d15e6833dd1eb6464a6d92ebe275d5323 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001411789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-4763 |
| IngestDate | Thu Oct 02 21:28:34 EDT 2025 Sat Oct 11 05:41:08 EDT 2025 Thu Sep 11 02:51:55 EDT 2025 Sat Nov 29 07:35:20 EST 2025 Mon Oct 20 23:46:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | multi-input multi-output (MIMO) mutual information Ewens sampling stochastic gradient Gene mutation rate convolutional neural network (CNN) machine learning |
| Language | English |
| License | 2025 Informa UK Limited, trading as Taylor & Francis Group. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-d642e1ceb60cff9cbd028af30d257de7d15e6833dd1eb6464a6d92ebe275d5323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 40927349 |
| PQID | 3258054570 |
| PQPubID | 32901 |
| PageCount | 33 |
| ParticipantIDs | proquest_miscellaneous_3248448715 pubmed_primary_40927349 crossref_primary_10_1080_02664763_2025_2460076 proquest_journals_3258054570 informaworld_taylorfrancis_310_1080_02664763_2025_2460076 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-10 |
| PublicationDateYYYYMMDD | 2025-09-10 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Abingdon |
| PublicationTitle | Journal of applied statistics |
| PublicationTitleAlternate | J Appl Stat |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_52_1 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_16_1 e_1_3_3_35_1 Peluchetti S. (e_1_3_3_41_1) 2023; 24 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 Nelson D.L. (e_1_3_3_37_1) 2021 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 Dai W. (e_1_3_3_11_1) 2018; 16 Luenberger D.G. (e_1_3_3_36_1) 1984 e_1_3_3_7_1 e_1_3_3_9_1 Vaswani A. (e_1_3_3_49_1) 2017; 30 e_1_3_3_25_1 e_1_3_3_48_1 Pardi N. (e_1_3_3_39_1) 2018; 17 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_51_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_6_1 e_1_3_3_8_1 Kolmogorov A.N. (e_1_3_3_29_1) 1957; 114 e_1_3_3_28_1 e_1_3_3_24_1 Kratsios A. (e_1_3_3_30_1) 2023; 24 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_23_1 doi: 10.1016/j.jnca.2022.103413 – ident: e_1_3_3_33_1 – volume: 114 start-page: 953 year: 1957 ident: e_1_3_3_29_1 article-title: On the representation of continuous functions of several variables as superpositions of continuous functions of a smaller number of variables publication-title: Dokl. Akad. Nauk. SSSR – ident: e_1_3_3_31_1 doi: 10.1089/crispr.2022.0002 – ident: e_1_3_3_51_1 doi: 10.2307/1426228 – volume: 16 start-page: 659 year: 2018 ident: e_1_3_3_11_1 article-title: A unified system of FB-SDEs with Lévy jumps and double completely- S skew reflections publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2018.v16.n3.a4 – ident: e_1_3_3_12_1 doi: 10.1080/13873954.2019.1677725 – ident: e_1_3_3_32_1 doi: 10.1162/neco.1989.1.4.541 – ident: e_1_3_3_18_1 doi: 10.3934/math.2024909 – ident: e_1_3_3_21_1 doi: 10.1371/journal.pone.0259101 – ident: e_1_3_3_4_1 doi: 10.1038/s41587-019-0137-8 – volume: 24 start-page: 1 year: 2023 ident: e_1_3_3_30_1 article-title: Small transformers compute universal metric embeddings publication-title: J. Mach. Learn. Res. – volume-title: Lehninger Principles of Biochemistry year: 2021 ident: e_1_3_3_37_1 – ident: e_1_3_3_46_1 – ident: e_1_3_3_50_1 doi: 10.1126/science.abn2100 – ident: e_1_3_3_57_1 doi: 10.1016/j.ymthe.2022.04.010 – volume: 24 start-page: 1 year: 2023 ident: e_1_3_3_41_1 article-title: Diffusion bridge mixture transports, Schr o¨dinger bridge problems and generative modeling publication-title: J. Mach. Learn. Res. – ident: e_1_3_3_20_1 doi: 10.1016/0040-5809(72)90035-4 – ident: e_1_3_3_28_1 doi: 10.1093/bioinformatics/btac428 – ident: e_1_3_3_8_1 doi: 10.1126/science.adg7492 – ident: e_1_3_3_25_1 doi: 10.1016/j.biomaterials.2022.121510 – ident: e_1_3_3_35_1 doi: 10.1080/03610918.2021.1970184 – volume: 30 start-page: 5998 year: 2017 ident: e_1_3_3_49_1 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_3_42_1 doi: 10.1109/ISIMP.2004.1434023 – ident: e_1_3_3_14_1 – ident: e_1_3_3_26_1 doi: 10.1186/s12859-023-05246-8 – ident: e_1_3_3_45_1 doi: 10.1016/j.csbj.2020.06.035 – ident: e_1_3_3_5_1 doi: 10.1007/s00365-009-9054-2 – ident: e_1_3_3_15_1 doi: 10.1016/j.camwa.2022.05.019 – ident: e_1_3_3_3_1 doi: 10.1016/j.cor.2020.104932 – ident: e_1_3_3_22_1 doi: 10.1214/20-AAP1600 – ident: e_1_3_3_44_1 doi: 10.1038/nature24270 – ident: e_1_3_3_24_1 doi: 10.1214/22-AAP1806 – ident: e_1_3_3_48_1 doi: 10.1038/nm.2471 – ident: e_1_3_3_13_1 – ident: e_1_3_3_17_1 doi: 10.1007/s11128-023-03851-3 – ident: e_1_3_3_16_1 doi: 10.1007/s12351-022-00723-z – ident: e_1_3_3_47_1 doi: 10.1214/18-AAP1433 – ident: e_1_3_3_2_1 doi: 10.1109/ACCESS.2020.3010896 – ident: e_1_3_3_19_1 doi: 10.1126/science.add2187 – ident: e_1_3_3_27_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_3_3_58_1 doi: 10.1038/s41586-019-1314-0 – ident: e_1_3_3_38_1 doi: 10.1126/scitranslmed.aan6446 – ident: e_1_3_3_43_1 doi: 10.1093/bioinformatics/btaa248 – ident: e_1_3_3_9_1 – ident: e_1_3_3_52_1 doi: 10.1126/science.add1964 – ident: e_1_3_3_53_1 doi: 10.1007/s13244-018-0639-9 – volume-title: Linear and Nonlinear Programming year: 1984 ident: e_1_3_3_36_1 – ident: e_1_3_3_54_1 doi: 10.1016/j.biopha.2022.112787 – ident: e_1_3_3_6_1 – volume: 17 start-page: 261 year: 2018 ident: e_1_3_3_39_1 article-title: mRNA vaccines – a new era in vaccinology publication-title: Nat. Rev. – ident: e_1_3_3_55_1 doi: 10.1007/978-3-642-61859-8 – ident: e_1_3_3_34_1 – ident: e_1_3_3_10_1 doi: 10.1080/13873954.2018.1516677 – ident: e_1_3_3_7_1 doi: 10.1038/d41586-024-01383-z – ident: e_1_3_3_40_1 doi: 10.3389/fbioe.2024.1371596 – ident: e_1_3_3_56_1 |
| SSID | ssj0008153 |
| Score | 2.3906367 |
| Snippet | We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2321 |
| SubjectTerms | Algorithms Artificial neural networks convolutional neural network (CNN) Ewens sampling Gene mutation rate Gene sequencing Genetic modification Kuhn-Tucker method Machine learning multi-input multi-output (MIMO) mutual information Mutation Optimization Optimization techniques Proteins Sampling stochastic gradient |
| Title | Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2025.2460076 https://www.ncbi.nlm.nih.gov/pubmed/40927349 https://www.proquest.com/docview/3258054570 https://www.proquest.com/docview/3248448715 |
| Volume | 52 |
| WOSCitedRecordID | wos001411789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1360-0532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008153 issn: 0266-4763 databaseCode: TFW dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4lAOFMproVRGQtxS_EpsH6uqqx5gxaGIvUWO7SxV2Sza7Ja_z0zsrOih4kCPkR-yPTOe-eLxZ0I-BGWl0Q0rhAUxqJbZotGBFZEFbZ00QrPhovBnPZuZ-dx-zdmEfU6rRAzdJqKIYa9G43ZNP2bEfQLYUCmwC0B3ojwRCinWkXQbXD-a5uX0-24vNjzxUEKLApuMd3ju6uWWd7rFXXp3BDp4ounBPczhKXmSw1B6mvTmGXkQu0Py-MuOw7U_JPsYhyYa5-fkGump6XKbDu4pUnOkO489vblyWLCF7vJMhiowMnr-G0Ay7R1mrXcLih4z0LPZjH6kyyGJM9L8asWCup-L1fpq82PZvyDfpueXZxdFfqeh8FKJTREAw0TuY1Mx37bWNwGCFtdKFmA_CFEHXsbKSBkChzqqUq4KVoD2CF2GUgr5kux1qy6-JrTl2kvrReVKpwKLyH5vGm9NGwFaeT4hJ6N86l-JjqPmI8tpXtIal7TOSzoh9m8p1pvhP0ibHi2p5T_aHo0ir7NlQxNRGghzS80m5P2uGGwSD1pcF1dbrKMMwF7Nywl5lVRlN1rA08goZN_8x8Dekn38xLQVzo7I3ma9je_II38DWrE-Jg_13BwPdvAHVX8C5g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgIDEeBowBNwYECfHWkSZNkzyiaachbn06xN6qNkmPaVwP3cf497Gb9rQ9TDzAc-Ioie3YTuxfAD74zEqja54Ii2zIGm6TWnueBO61raQRmneFwhNdFObiwt6shaG0SoqhmwgU0Z3VpNx0GT2kxH3CuCHPUDEwvBPqWGSEsZ7fhwcKbS3h50_H37ensUkjEiWSJEQzVPHcNcwt-3QLvfRuH7SzReMn_2MVT2Gv90TZ5yg6z-BeaPfh8fkWxnW1D7vkikYk5-dwRQjVbL6Jb_eM0Dli2eOKXV9W1LDB4fqldF1wauz0N8bJbFVR4no7Y2Q0PTspCvaRzbs8zsD6jytmrPo5Wywv1z_mqwP4Nj6dnpwl_VcNiZOZWCcew5iQulDn3DWNdbVHv6VqJPd4JPigfapCbqT0PsU-WZ5VubcCBUho5ZUU8gXstIs2vALWpNpJ60ReqSrzPBAAvqmdNU3A6MqlIzgeGFT-iogcZToAnfZbWtKWlv2WjsDeZGO57q5CmvhvSSn_Qns08LzslRtJhDLo6SrNR_B-24xqSW8tVRsWG-qTGYx8dapG8DLKyna2GFITqJA9_IeJvYNHZ9PzSTn5Unx9DbvURFksKT-CnfVyE97AQ3eNErJ826nDH5ubBig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagceBRaFgoYCXFL69hJbB9R6QpEiXooorfI8WOpYLPVZrf8fcaxs6KHigOc7bFsz4w9nz3-DPDWFopL0dKMKVRD4anKWmFp5qgVSnPJBB0eCp-Iupbn5-o0ZRP2Ka0yYGgfiSKGtTo496X1Y0bcIcKGqkC_QHTHygNWBIr16jbcwdC5CkZ-Nv22WYxlHokoUSQLMuMjnpuaubY9XSMvvTkEHbai6cP_MIhH8CDFoeR9NJzHcMt1O3D_y4bEtd-B7RCIRh7nJ_Aj8FOT-Tre3JPAzREfPfbk6kKHgjU2l0YyVMGekeNfiJJJr0PaejcjYcu05KiuyTsyH7I4HUnfVsyI_jlbLC9W3-f9U_g6PT47-piljxoywwu2yiyCGJcb11bUeK9MazFq0Z5TiwuCdcLmpask59bmWKeoCl1ZxdB8mChtyRnfha1u0blnQHwuDFeGVbrUhaUu0N_L1ijpHWIrk0_gYNRPcxn5OJp8pDlNU9qEKW3SlE5A_anFZjUchPj4a0nD_yK7P6q8Sa6NIqyUGOeWgk7gzaYYnTLctOjOLdahTiER94q8nMBeNJVNbxFQB0oh9fwfOvYa7p1-mDYnn-rPL2A7lIQUlpzuw9ZquXYv4a65QgNZvhqc4Td9gQTa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+mutation+estimations+via+mutual+information+and+Ewens+sampling+based+CNN+%26+machine+learning+algorithms&rft.jtitle=Journal+of+applied+statistics&rft.au=Dai%2C+Wanyang&rft.date=2025-09-10&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=52&rft.issue=12&rft.spage=2321&rft.epage=2353&rft_id=info:doi/10.1080%2F02664763.2025.2460076&rft.externalDocID=2460076 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |