Logical and Algebraic Characterizations of Rational Transductions

Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congrue...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 15, Issue 4; číslo 4
Hlavní autoři: Filiot, Emmanuel, Gauwin, Olivier, Lhote, Nathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science Association 19.12.2019
Logical Methods in Computer Science e.V
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-15(4:16)2019