A large-scale corpus for assessing source-based writing quality: ASAP 2.0

This paper introduces ASAP 2.0, a dataset of ∼25,000 source-based argumentative essays from U.S. secondary students. The corpus addresses the shortcomings of the original ASAP corpus by including demographic data, consistent scoring rubrics, and source texts. ASAP 2.0 aims to support the development...

Full description

Saved in:
Bibliographic Details
Published in:Assessing writing Vol. 65; p. 100954
Main Authors: Crossley, Scott A., Baffour, Perpetual, Burleigh, L., King, Jules
Format: Journal Article
Language:English
Published: Elsevier Inc 01.07.2025
Subjects:
ISSN:1075-2935
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces ASAP 2.0, a dataset of ∼25,000 source-based argumentative essays from U.S. secondary students. The corpus addresses the shortcomings of the original ASAP corpus by including demographic data, consistent scoring rubrics, and source texts. ASAP 2.0 aims to support the development of unbiased, sophisticated Automatic Essay Scoring (AES) systems that can foster improved educational practices by providing summative to students. The corpus is designed for broad accessibility with the hope of facilitating research into writing quality and AES system biases. •We introduce the ASAP 2.0 corpus.•The corpus contains over 25,000 source-based essays.•Each essay is scored for overall writing quality.•The corpus can be used to computationally and quantitatively model source-based writing quality.
ISSN:1075-2935
DOI:10.1016/j.asw.2025.100954