A large-scale corpus for assessing source-based writing quality: ASAP 2.0

This paper introduces ASAP 2.0, a dataset of ∼25,000 source-based argumentative essays from U.S. secondary students. The corpus addresses the shortcomings of the original ASAP corpus by including demographic data, consistent scoring rubrics, and source texts. ASAP 2.0 aims to support the development...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Assessing writing Ročník 65; s. 100954
Hlavní autori: Crossley, Scott A., Baffour, Perpetual, Burleigh, L., King, Jules
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2025
Predmet:
ISSN:1075-2935
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces ASAP 2.0, a dataset of ∼25,000 source-based argumentative essays from U.S. secondary students. The corpus addresses the shortcomings of the original ASAP corpus by including demographic data, consistent scoring rubrics, and source texts. ASAP 2.0 aims to support the development of unbiased, sophisticated Automatic Essay Scoring (AES) systems that can foster improved educational practices by providing summative to students. The corpus is designed for broad accessibility with the hope of facilitating research into writing quality and AES system biases. •We introduce the ASAP 2.0 corpus.•The corpus contains over 25,000 source-based essays.•Each essay is scored for overall writing quality.•The corpus can be used to computationally and quantitatively model source-based writing quality.
ISSN:1075-2935
DOI:10.1016/j.asw.2025.100954