A three-stage parameter prediction approach for low-carbon gear hobbing
Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which...
Saved in:
| Published in: | Journal of cleaner production Vol. 289; p. 125777 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
20.03.2021
|
| Subjects: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research.
[Display omitted]
•Harris hawks optimization is applied to improve the parameters of ε-SVR and hobbing.•Prediction accuracy of ε-SVR is greatly improved with Harris hawks optimization.•Multi-objective Harris hawks optimization is realized using Pareto optimization.•Hobbing parameters are revised for carbon emissions, cutting time and cost.•The proposed method achieved a relative carbon emission reduction of 9.3%. |
|---|---|
| AbstractList | Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research.
[Display omitted]
•Harris hawks optimization is applied to improve the parameters of ε-SVR and hobbing.•Prediction accuracy of ε-SVR is greatly improved with Harris hawks optimization.•Multi-objective Harris hawks optimization is realized using Pareto optimization.•Hobbing parameters are revised for carbon emissions, cutting time and cost.•The proposed method achieved a relative carbon emission reduction of 9.3%. Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research. |
| ArticleNumber | 125777 |
| Author | Ni, Jianjun Ye, Changqing Jiang, Boyan Cao, Weidong |
| Author_xml | – sequence: 1 givenname: Weidong surname: Cao fullname: Cao, Weidong email: cwd2018@hhu.edu.cn – sequence: 2 givenname: Jianjun orcidid: 0000-0002-7130-8331 surname: Ni fullname: Ni, Jianjun – sequence: 3 givenname: Boyan surname: Jiang fullname: Jiang, Boyan – sequence: 4 givenname: Changqing surname: Ye fullname: Ye, Changqing |
| BookMark | eNqFkMFKAzEQhoMo2FYfQdijl61Jdjdp8CClaBUKXvQcZtPZNst2syap4tub0p689DTM8H8_wzcml73rkZA7RqeMMvHQTlvT4eDdlFOebrySUl6QEZtJlTM5E5dkRFWlclFxcU3GIbSUMkllOSLLeRa3HjEPETaYDeBhhxF9NnhcWxOt6zMYUjeYbdY4n3XuJzfg63TfIPhs6-ra9psbctVAF_D2NCfk8-X5Y_Gar96Xb4v5KjdFyWMOVEkqTIECS8apalCpogGQUHCgrK4rKJVQ5cysZWNmPC1cCoVYrivOKlVMyP2xN730tccQ9c4Gg10HPbp90LxijKmiEEWKVseo8S4Ej40evN2B_9WM6oM43eqTOH0Qp4_iEvf4jzM2wsFE9GC7s_TTkcZk4dui18FY7E2y6dFEvXb2TMMfJgCOsw |
| CitedBy_id | crossref_primary_10_1007_s11465_025_0840_8 crossref_primary_10_1016_j_engappai_2023_106655 crossref_primary_10_1186_s10033_025_01192_z crossref_primary_10_1109_TASE_2025_3560253 crossref_primary_10_1016_j_jmapro_2024_11_026 crossref_primary_10_1007_s11465_024_0811_5 crossref_primary_10_1016_j_jclepro_2021_129566 crossref_primary_10_1155_2022_4724504 crossref_primary_10_1016_j_mechmachtheory_2023_105505 crossref_primary_10_1007_s10586_024_04770_3 crossref_primary_10_1007_s00170_022_09669_0 crossref_primary_10_1016_j_jmapro_2022_10_077 crossref_primary_10_1007_s00170_023_12167_6 crossref_primary_10_1007_s00170_023_11385_2 crossref_primary_10_3103_S0146411624701153 |
| Cites_doi | 10.1007/s00170-005-0148-0 10.1016/j.eswa.2014.03.053 10.1007/s00170-017-0823-y 10.1016/j.jclepro.2015.02.076 10.1016/j.cirp.2008.03.117 10.1016/j.energy.2018.09.191 10.1016/j.energy.2019.02.157 10.1016/j.jclepro.2018.10.191 10.1016/j.jclepro.2018.07.185 10.1016/j.jclepro.2019.118447 10.1016/j.advengsoft.2017.07.002 10.1016/j.energy.2019.115911 10.1016/j.procir.2013.05.055 10.1016/j.jclepro.2015.04.068 10.1016/j.advengsoft.2015.01.010 10.1007/s00521-015-1920-1 10.1007/s00170-019-04134-x 10.1007/s00170-015-8114-y 10.1016/j.jclepro.2016.08.064 10.1007/s12206-017-0538-x 10.1007/s10845-016-1233-y 10.1016/j.jclepro.2014.07.073 10.1080/0951192X.2017.1328561 10.1016/j.future.2019.02.028 10.1007/s10845-013-0812-4 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2020.125777 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2020_125777 S0959652620358236 |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-a09706c3e6e41209fe993faa7a32a01bb5a496948cd7fc824962769ee4d521593 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620272200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Sun Sep 28 01:06:29 EDT 2025 Sat Nov 29 07:06:24 EST 2025 Tue Nov 18 21:32:34 EST 2025 Fri Feb 23 02:40:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ε-support vector regression Parameter prediction Improved multi-objective Harris hawks optimization Gear hobbing Low-carbon |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-a09706c3e6e41209fe993faa7a32a01bb5a496948cd7fc824962769ee4d521593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7130-8331 |
| PQID | 2511193363 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2511193363 crossref_primary_10_1016_j_jclepro_2020_125777 crossref_citationtrail_10_1016_j_jclepro_2020_125777 elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_125777 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-20 |
| PublicationDateYYYYMMDD | 2021-03-20 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Tang, Cui, Li (bib13) 2015; 26 Jeswiet, Kara (bib10) 2008; 57 Liu, Liu, Liu, Wu (bib17) 2016; 22 Bache, Lichman (bib1) 2013 Mirjalili, Jangir, Saremi (bib21) 2016; 46 Chen, Li, Tang, Li, Du, Li (bib6) 2019; 175 D’Addona, Teti (bib7) 2013; 7 Xiao, Li, Tang, Li, Li (bib24) 2019; 166 Li, Cao, Liu, Zeng, Chen (bib14) 2019; 104 Cao, Yan, Wu (bib4) 2018; 24 Garg, Lam (bib8) 2015; 102 Chang, Lin (bib5) 2011; 2 Zhou, Zhou, Lu, Tian, Xiao (bib30) 2018; 31 Kavousi-Fard, Samet, Marzbani (bib12) 2014; 41 Zhang, Cao, Chen, Zhu, Yang (bib29) 2017; 31 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib9) 2019; 97 Cao, Yan, Wu, Tuo (bib3) 2017; 93 Li, Li, Tang, Zhu, Li (bib15) 2019; 30 Zhou, Lu, Xiao, Zhou, Tian (bib31) 2019; 208 Yi, Li, Tang, Chen (bib26) 2015; 95 Mirjalili (bib19) 2015; 83 Zhang, Wei (bib28) 2010 Li, Zhao, Tseng, Tan (bib16) 2020; 242 Kant, Sangwan (bib11) 2014; 83 Xiao, Li, Tang, Pan, Yu, Chen (bib25) 2019; 187 Cao, Yan, Ding, Ma (bib2) 2016; 85 Ma, Zhang, Hon, Gong (bib18) 2018; 199 Mirjalili (bib20) 2016; 27 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib22) 2017; 114 Sreeram, Kumar, Rahman, Zaman (bib23) 2006; 30 Yu, Li, Huang, Li, Nie (bib27) 2016; 139 Mirjalili (10.1016/j.jclepro.2020.125777_bib19) 2015; 83 Mirjalili (10.1016/j.jclepro.2020.125777_bib21) 2016; 46 Jeswiet (10.1016/j.jclepro.2020.125777_bib10) 2008; 57 Cao (10.1016/j.jclepro.2020.125777_bib4) 2018; 24 Xiao (10.1016/j.jclepro.2020.125777_bib24) 2019; 166 Cao (10.1016/j.jclepro.2020.125777_bib3) 2017; 93 Li (10.1016/j.jclepro.2020.125777_bib16) 2020; 242 Zhou (10.1016/j.jclepro.2020.125777_bib30) 2018; 31 Kant (10.1016/j.jclepro.2020.125777_bib11) 2014; 83 Li (10.1016/j.jclepro.2020.125777_bib15) 2019; 30 Li (10.1016/j.jclepro.2020.125777_bib14) 2019; 104 Ma (10.1016/j.jclepro.2020.125777_bib18) 2018; 199 Sreeram (10.1016/j.jclepro.2020.125777_bib23) 2006; 30 Yu (10.1016/j.jclepro.2020.125777_bib27) 2016; 139 Mirjalili (10.1016/j.jclepro.2020.125777_bib22) 2017; 114 Chen (10.1016/j.jclepro.2020.125777_bib6) 2019; 175 Zhou (10.1016/j.jclepro.2020.125777_bib31) 2019; 208 Bache (10.1016/j.jclepro.2020.125777_bib1) Kavousi-Fard (10.1016/j.jclepro.2020.125777_bib12) 2014; 41 Cao (10.1016/j.jclepro.2020.125777_bib2) 2016; 85 Liu (10.1016/j.jclepro.2020.125777_bib17) 2016; 22 Garg (10.1016/j.jclepro.2020.125777_bib8) 2015; 102 Yi (10.1016/j.jclepro.2020.125777_bib26) 2015; 95 Zhang (10.1016/j.jclepro.2020.125777_bib28) 2010 D’Addona (10.1016/j.jclepro.2020.125777_bib7) 2013; 7 Li (10.1016/j.jclepro.2020.125777_bib13) 2015; 26 Zhang (10.1016/j.jclepro.2020.125777_bib29) 2017; 31 Xiao (10.1016/j.jclepro.2020.125777_bib25) 2019; 187 Mirjalili (10.1016/j.jclepro.2020.125777_bib20) 2016; 27 Chang (10.1016/j.jclepro.2020.125777_bib5) 2011; 2 Heidari (10.1016/j.jclepro.2020.125777_bib9) 2019; 97 |
| References_xml | – volume: 199 start-page: 529 year: 2018 end-page: 537 ident: bib18 article-title: An optimization approach of selective laser sintering considering energy consumption and material cost publication-title: J. Clean. Prod. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib22 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software – volume: 2 start-page: 389 year: 2011 end-page: 396 ident: bib5 article-title: LIBSVM: a library for support vector machines publication-title: Acm T Intel Syst. Tec. – volume: 166 start-page: 142 year: 2019 end-page: 156 ident: bib24 article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning publication-title: Energy – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: bib19 article-title: The ant lion optimizer publication-title: Adv. Eng. Software – year: 2013 ident: bib1 article-title: UCI machine learning repository – volume: 95 start-page: 256 year: 2015 end-page: 264 ident: bib26 article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing publication-title: J. Clean. Prod. – volume: 7 start-page: 323 year: 2013 end-page: 328 ident: bib7 article-title: Genetic algorithm-based optimization of cutting parameters in turning processes publication-title: Procedia CIRP – volume: 30 start-page: 123 year: 2019 end-page: 138 ident: bib15 article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling publication-title: J. Intell. Manuf. – volume: 31 start-page: 406 year: 2018 end-page: 425 ident: bib30 article-title: Feature-based carbon emission quantitation strategy for the part machining process publication-title: Int. J. Comput. Integrated Manuf. – volume: 85 start-page: 2657 year: 2016 end-page: 2667 ident: bib2 article-title: A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm publication-title: Int. J. Adv. Manuf. Technol. – volume: 26 start-page: 911 year: 2015 end-page: 922 ident: bib13 article-title: A quantitative approach to analyze carbon emissions of CNC-based machining systems publication-title: J. Intell. Manuf. – start-page: 231 year: 2010 end-page: 234 ident: bib28 article-title: Selection of optimal process parameters for gear hobbing under cold air minimum quantity lubrication cutting environment publication-title: Proceedings of the 36th International Matador Conference – volume: 187 year: 2019 ident: bib25 article-title: Multi-component energy modeling and optimization for sustainable dry gear hobbing publication-title: Energy – volume: 93 start-page: 4099 year: 2017 end-page: 4110 ident: bib3 article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing publication-title: Int. J. Adv. Manuf. Technol. – volume: 24 start-page: 2502 year: 2018 end-page: 2513 ident: bib4 article-title: Optimization of cutting parameters for high-speed gear hobbing based on small sample problem publication-title: Comput. Integr. Manuf. Syst. – volume: 41 start-page: 6047 year: 2014 end-page: 6056 ident: bib12 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Expert Syst. Appl. – volume: 46 start-page: 1 year: 2016 end-page: 17 ident: bib21 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. – volume: 104 start-page: 2657 year: 2019 end-page: 2668 ident: bib14 article-title: Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing publication-title: Int. J. Adv. Manuf. Technol. – volume: 22 start-page: 1550 year: 2016 end-page: 1557 ident: bib17 article-title: On-line detecting method and system of multi-source energy state for machine tools publication-title: Comput. Integr. Manuf. Syst. – volume: 139 start-page: 473 year: 2016 end-page: 487 ident: bib27 article-title: Planning carbon dioxide mitigation of Qingdao’s electric power systems under dual uncertainties publication-title: J. Clean. Prod. – volume: 208 start-page: 937 year: 2019 end-page: 950 ident: bib31 article-title: Cutting parameter optimization for machining operations considering carbon emissions publication-title: J. Clean. Prod. – volume: 30 start-page: 1030 year: 2006 end-page: 1039 ident: bib23 article-title: Optimization of cutting parameters in micro end milling operations in dry cutting condition using genetic algorithms publication-title: Int. J. Adv. Manuf. Technol. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib9 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generat. Comput. Syst. – volume: 175 start-page: 1021 year: 2019 end-page: 1037 ident: bib6 article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time publication-title: Energy – volume: 102 start-page: 246 year: 2015 end-page: 263 ident: bib8 article-title: Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach publication-title: J. Clean. Prod. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: bib20 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – volume: 83 start-page: 151 year: 2014 end-page: 164 ident: bib11 article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining publication-title: J. Clean. Prod. – volume: 242 year: 2020 ident: bib16 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J. Clean. Prod. – volume: 31 start-page: 2951 year: 2017 end-page: 2960 ident: bib29 article-title: An adaptive parameter optimization model and system for sustainable gear dry hobbing in batch production publication-title: J. Mech. Sci. Technol. – volume: 57 start-page: 17 year: 2008 end-page: 20 ident: bib10 article-title: Carbon emissions and CES™ in manufacturing publication-title: CIRP Ann. - Manuf. Technol. – volume: 30 start-page: 1030 issue: 11–12 year: 2006 ident: 10.1016/j.jclepro.2020.125777_bib23 article-title: Optimization of cutting parameters in micro end milling operations in dry cutting condition using genetic algorithms publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0148-0 – volume: 41 start-page: 6047 issue: 13 year: 2014 ident: 10.1016/j.jclepro.2020.125777_bib12 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.053 – volume: 24 start-page: 2502 issue: 10 year: 2018 ident: 10.1016/j.jclepro.2020.125777_bib4 article-title: Optimization of cutting parameters for high-speed gear hobbing based on small sample problem publication-title: Comput. Integr. Manuf. Syst. – volume: 93 start-page: 4099 issue: 9–12 year: 2017 ident: 10.1016/j.jclepro.2020.125777_bib3 article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0823-y – volume: 95 start-page: 256 year: 2015 ident: 10.1016/j.jclepro.2020.125777_bib26 article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.02.076 – volume: 57 start-page: 17 issue: 1 year: 2008 ident: 10.1016/j.jclepro.2020.125777_bib10 article-title: Carbon emissions and CES™ in manufacturing publication-title: CIRP Ann. - Manuf. Technol. doi: 10.1016/j.cirp.2008.03.117 – volume: 166 start-page: 142 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib24 article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning publication-title: Energy doi: 10.1016/j.energy.2018.09.191 – start-page: 231 year: 2010 ident: 10.1016/j.jclepro.2020.125777_bib28 article-title: Selection of optimal process parameters for gear hobbing under cold air minimum quantity lubrication cutting environment – volume: 175 start-page: 1021 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib6 article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time publication-title: Energy doi: 10.1016/j.energy.2019.02.157 – volume: 208 start-page: 937 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib31 article-title: Cutting parameter optimization for machining operations considering carbon emissions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.191 – volume: 199 start-page: 529 year: 2018 ident: 10.1016/j.jclepro.2020.125777_bib18 article-title: An optimization approach of selective laser sintering considering energy consumption and material cost publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.07.185 – volume: 242 year: 2020 ident: 10.1016/j.jclepro.2020.125777_bib16 article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118447 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.jclepro.2020.125777_bib22 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 187 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib25 article-title: Multi-component energy modeling and optimization for sustainable dry gear hobbing publication-title: Energy doi: 10.1016/j.energy.2019.115911 – volume: 7 start-page: 323 year: 2013 ident: 10.1016/j.jclepro.2020.125777_bib7 article-title: Genetic algorithm-based optimization of cutting parameters in turning processes publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.05.055 – volume: 2 start-page: 389 issue: 3 year: 2011 ident: 10.1016/j.jclepro.2020.125777_bib5 article-title: LIBSVM: a library for support vector machines publication-title: Acm T Intel Syst. Tec. – volume: 102 start-page: 246 year: 2015 ident: 10.1016/j.jclepro.2020.125777_bib8 article-title: Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.04.068 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.jclepro.2020.125777_bib19 article-title: The ant lion optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.jclepro.2020.125777_bib20 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 22 start-page: 1550 issue: 6 year: 2016 ident: 10.1016/j.jclepro.2020.125777_bib17 article-title: On-line detecting method and system of multi-source energy state for machine tools publication-title: Comput. Integr. Manuf. Syst. – volume: 46 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jclepro.2020.125777_bib21 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. – volume: 104 start-page: 2657 issue: 5–8 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib14 article-title: Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-04134-x – volume: 85 start-page: 2657 issue: 9–12 year: 2016 ident: 10.1016/j.jclepro.2020.125777_bib2 article-title: A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-8114-y – ident: 10.1016/j.jclepro.2020.125777_bib1 – volume: 139 start-page: 473 year: 2016 ident: 10.1016/j.jclepro.2020.125777_bib27 article-title: Planning carbon dioxide mitigation of Qingdao’s electric power systems under dual uncertainties publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.08.064 – volume: 31 start-page: 2951 issue: 6 year: 2017 ident: 10.1016/j.jclepro.2020.125777_bib29 article-title: An adaptive parameter optimization model and system for sustainable gear dry hobbing in batch production publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-017-0538-x – volume: 30 start-page: 123 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib15 article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling publication-title: J. Intell. Manuf. doi: 10.1007/s10845-016-1233-y – volume: 83 start-page: 151 year: 2014 ident: 10.1016/j.jclepro.2020.125777_bib11 article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.07.073 – volume: 31 start-page: 406 issue: 4–5 year: 2018 ident: 10.1016/j.jclepro.2020.125777_bib30 article-title: Feature-based carbon emission quantitation strategy for the part machining process publication-title: Int. J. Comput. Integrated Manuf. doi: 10.1080/0951192X.2017.1328561 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.jclepro.2020.125777_bib9 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 26 start-page: 911 issue: 5 year: 2015 ident: 10.1016/j.jclepro.2020.125777_bib13 article-title: A quantitative approach to analyze carbon emissions of CNC-based machining systems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0812-4 |
| SSID | ssj0017074 |
| Score | 2.4147558 |
| Snippet | Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125777 |
| SubjectTerms | algorithms carbon carbonization cutting data collection emissions energy Gear hobbing hybrids Improved multi-objective Harris hawks optimization Low-carbon Parameter prediction prediction regression analysis sustainable development ε-support vector regression |
| Title | A three-stage parameter prediction approach for low-carbon gear hobbing |
| URI | https://dx.doi.org/10.1016/j.jclepro.2020.125777 https://www.proquest.com/docview/2511193363 |
| Volume | 289 |
| WOSCitedRecordID | wos000620272200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFO0BRQkxKXykodjx8el2vLQauGwheVk2Y6z7Kok231A-feMHSdZlaKWA5coa2XymPl2PPbY3yD0UuUylBktcMi1xCTREc4U47jQhOQs1SR1lEKfh2w0yiYT_smXt1q5cgKsLLPzc774r6aGNjC23Tr7D-ZubwoNcA5GhyOYHY7XMrxdp7E0BkPYNzWHltr7u13yYtkA8pkvDO6JxN0aw9PqJ9ZyqaB9all9vlVKNf3Zn1ErPEyW7m6OKXYri38k3azrFzPLKy_u8h0OJwDC-aa91P50LuZN9atD51fj8__l9Kx5AT8fEbsFWXF4YWKRpvU--MbHwrDucNGDYIoxhi_13PUkwrw3h--AT4CRexx6ga6ratLzo4_i-GQ4FOPBZPxqcYZtETGbbPcVVW6i3ZilHPz0bv_9YPKhTSuxsKblbl6x29L1-tIn_y1YudBtu1hkfA_d9eYI-rXx76MbpnyA7mxRSz5Eb_vBFgyCFgZBB4OggUEAMAg6GAQWBoGHwSN0cjwYH73DvmgG1gmJ11iGnIVUJ4YaYvdFFwYi0EJKJpNYhpFSqSSccpLpnBU6g9E3jRnlxpAcIrmUJ4_RTlmV5gkKZKQI6EZFMqWEFVIpmvMoV1xbUsSM7iHSaEdozyhvC5ucimbp4Fx4pQqrVFErdQ_1WrFFTalylUDWqF74uLCO9wSA5yrRF42pBPhNmwyDP0m1WQk7tIbBS0KT_Wtcc4Bud1h_inbWy415hm7pH-vZavncw-w3ZcKQFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+parameter+prediction+approach+for+low-carbon+gear+hobbing&rft.jtitle=Journal+of+cleaner+production&rft.au=Cao%2C+Weidong&rft.au=Ni%2C+Jianjun&rft.au=Jiang%2C+Boyan&rft.au=Ye%2C+Changqing&rft.date=2021-03-20&rft.issn=0959-6526&rft.volume=289+p.125777-&rft_id=info:doi/10.1016%2Fj.jclepro.2020.125777&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |