A three-stage parameter prediction approach for low-carbon gear hobbing

Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cleaner production Vol. 289; p. 125777
Main Authors: Cao, Weidong, Ni, Jianjun, Jiang, Boyan, Ye, Changqing
Format: Journal Article
Language:English
Published: Elsevier Ltd 20.03.2021
Subjects:
ISSN:0959-6526, 1879-1786
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research. [Display omitted] •Harris hawks optimization is applied to improve the parameters of ε-SVR and hobbing.•Prediction accuracy of ε-SVR is greatly improved with Harris hawks optimization.•Multi-objective Harris hawks optimization is realized using Pareto optimization.•Hobbing parameters are revised for carbon emissions, cutting time and cost.•The proposed method achieved a relative carbon emission reduction of 9.3%.
AbstractList Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research. [Display omitted] •Harris hawks optimization is applied to improve the parameters of ε-SVR and hobbing.•Prediction accuracy of ε-SVR is greatly improved with Harris hawks optimization.•Multi-objective Harris hawks optimization is realized using Pareto optimization.•Hobbing parameters are revised for carbon emissions, cutting time and cost.•The proposed method achieved a relative carbon emission reduction of 9.3%.
Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can effectively reduce energy consumption and carbon emissions. The initial value of process parameters is often generated in a large range, which has a negative effect on the subsequent parameter prediction and the improvement of carbon emission, cutting time and cost. In this paper, a three-stage parameter prediction approach is proposed based on the similarity retrieval method, ε-support vector regression (ε-SVR) and an improved Harris hawks optimization for reducing the cutting time, cost and carbon emissions under data-driven conditions. The first stage is responsible for searching past machining cases similar to hobbing process problems. The ε-SVR and Harris hawks optimization hybrid approach (SVR-HHO) is applied to predict the hobbing parameters in the second stage. Finally, the hobbing process parameters obtained in the second stage are revised using the improved multi-objective Harris hawks optimization for reducing carbon emissions, cutting time and cost. Compared with several well-established algorithms, SVR-HHO is evaluated against 9 benchmark datasets, performing better than 7 of them. A practical case of hobbing prediction is used to perform the feasibility verification and comparison study for the entire approach. The proposed approach achieved a relative carbon emission reduction of 9.3%, when compared to multi-objective HHO. The proposed approach obtained the optimum carbon emission, cutting time and cost compared with other approaches; therefore, it can adequately resolve the problem of the low-carbon hobbing parameter prediction. The performance of prediction stability and running time is slightly weak. Therefore, improving it is a major challenge for future research.
ArticleNumber 125777
Author Ni, Jianjun
Ye, Changqing
Jiang, Boyan
Cao, Weidong
Author_xml – sequence: 1
  givenname: Weidong
  surname: Cao
  fullname: Cao, Weidong
  email: cwd2018@hhu.edu.cn
– sequence: 2
  givenname: Jianjun
  orcidid: 0000-0002-7130-8331
  surname: Ni
  fullname: Ni, Jianjun
– sequence: 3
  givenname: Boyan
  surname: Jiang
  fullname: Jiang, Boyan
– sequence: 4
  givenname: Changqing
  surname: Ye
  fullname: Ye, Changqing
BookMark eNqFkMFKAzEQhoMo2FYfQdijl61Jdjdp8CClaBUKXvQcZtPZNst2syap4tub0p689DTM8H8_wzcml73rkZA7RqeMMvHQTlvT4eDdlFOebrySUl6QEZtJlTM5E5dkRFWlclFxcU3GIbSUMkllOSLLeRa3HjEPETaYDeBhhxF9NnhcWxOt6zMYUjeYbdY4n3XuJzfg63TfIPhs6-ra9psbctVAF_D2NCfk8-X5Y_Gar96Xb4v5KjdFyWMOVEkqTIECS8apalCpogGQUHCgrK4rKJVQ5cysZWNmPC1cCoVYrivOKlVMyP2xN730tccQ9c4Gg10HPbp90LxijKmiEEWKVseo8S4Ej40evN2B_9WM6oM43eqTOH0Qp4_iEvf4jzM2wsFE9GC7s_TTkcZk4dui18FY7E2y6dFEvXb2TMMfJgCOsw
CitedBy_id crossref_primary_10_1007_s11465_025_0840_8
crossref_primary_10_1016_j_engappai_2023_106655
crossref_primary_10_1186_s10033_025_01192_z
crossref_primary_10_1109_TASE_2025_3560253
crossref_primary_10_1016_j_jmapro_2024_11_026
crossref_primary_10_1007_s11465_024_0811_5
crossref_primary_10_1016_j_jclepro_2021_129566
crossref_primary_10_1155_2022_4724504
crossref_primary_10_1016_j_mechmachtheory_2023_105505
crossref_primary_10_1007_s10586_024_04770_3
crossref_primary_10_1007_s00170_022_09669_0
crossref_primary_10_1016_j_jmapro_2022_10_077
crossref_primary_10_1007_s00170_023_12167_6
crossref_primary_10_1007_s00170_023_11385_2
crossref_primary_10_3103_S0146411624701153
Cites_doi 10.1007/s00170-005-0148-0
10.1016/j.eswa.2014.03.053
10.1007/s00170-017-0823-y
10.1016/j.jclepro.2015.02.076
10.1016/j.cirp.2008.03.117
10.1016/j.energy.2018.09.191
10.1016/j.energy.2019.02.157
10.1016/j.jclepro.2018.10.191
10.1016/j.jclepro.2018.07.185
10.1016/j.jclepro.2019.118447
10.1016/j.advengsoft.2017.07.002
10.1016/j.energy.2019.115911
10.1016/j.procir.2013.05.055
10.1016/j.jclepro.2015.04.068
10.1016/j.advengsoft.2015.01.010
10.1007/s00521-015-1920-1
10.1007/s00170-019-04134-x
10.1007/s00170-015-8114-y
10.1016/j.jclepro.2016.08.064
10.1007/s12206-017-0538-x
10.1007/s10845-016-1233-y
10.1016/j.jclepro.2014.07.073
10.1080/0951192X.2017.1328561
10.1016/j.future.2019.02.028
10.1007/s10845-013-0812-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2020.125777
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2020_125777
S0959652620358236
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-a09706c3e6e41209fe993faa7a32a01bb5a496948cd7fc824962769ee4d521593
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620272200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Sun Sep 28 01:06:29 EDT 2025
Sat Nov 29 07:06:24 EST 2025
Tue Nov 18 21:32:34 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ε-support vector regression
Parameter prediction
Improved multi-objective Harris hawks optimization
Gear hobbing
Low-carbon
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-a09706c3e6e41209fe993faa7a32a01bb5a496948cd7fc824962769ee4d521593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7130-8331
PQID 2511193363
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2511193363
crossref_primary_10_1016_j_jclepro_2020_125777
crossref_citationtrail_10_1016_j_jclepro_2020_125777
elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_125777
PublicationCentury 2000
PublicationDate 2021-03-20
PublicationDateYYYYMMDD 2021-03-20
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Tang, Cui, Li (bib13) 2015; 26
Jeswiet, Kara (bib10) 2008; 57
Liu, Liu, Liu, Wu (bib17) 2016; 22
Bache, Lichman (bib1) 2013
Mirjalili, Jangir, Saremi (bib21) 2016; 46
Chen, Li, Tang, Li, Du, Li (bib6) 2019; 175
D’Addona, Teti (bib7) 2013; 7
Xiao, Li, Tang, Li, Li (bib24) 2019; 166
Li, Cao, Liu, Zeng, Chen (bib14) 2019; 104
Cao, Yan, Wu (bib4) 2018; 24
Garg, Lam (bib8) 2015; 102
Chang, Lin (bib5) 2011; 2
Zhou, Zhou, Lu, Tian, Xiao (bib30) 2018; 31
Kavousi-Fard, Samet, Marzbani (bib12) 2014; 41
Zhang, Cao, Chen, Zhu, Yang (bib29) 2017; 31
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib9) 2019; 97
Cao, Yan, Wu, Tuo (bib3) 2017; 93
Li, Li, Tang, Zhu, Li (bib15) 2019; 30
Zhou, Lu, Xiao, Zhou, Tian (bib31) 2019; 208
Yi, Li, Tang, Chen (bib26) 2015; 95
Mirjalili (bib19) 2015; 83
Zhang, Wei (bib28) 2010
Li, Zhao, Tseng, Tan (bib16) 2020; 242
Kant, Sangwan (bib11) 2014; 83
Xiao, Li, Tang, Pan, Yu, Chen (bib25) 2019; 187
Cao, Yan, Ding, Ma (bib2) 2016; 85
Ma, Zhang, Hon, Gong (bib18) 2018; 199
Mirjalili (bib20) 2016; 27
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib22) 2017; 114
Sreeram, Kumar, Rahman, Zaman (bib23) 2006; 30
Yu, Li, Huang, Li, Nie (bib27) 2016; 139
Mirjalili (10.1016/j.jclepro.2020.125777_bib19) 2015; 83
Mirjalili (10.1016/j.jclepro.2020.125777_bib21) 2016; 46
Jeswiet (10.1016/j.jclepro.2020.125777_bib10) 2008; 57
Cao (10.1016/j.jclepro.2020.125777_bib4) 2018; 24
Xiao (10.1016/j.jclepro.2020.125777_bib24) 2019; 166
Cao (10.1016/j.jclepro.2020.125777_bib3) 2017; 93
Li (10.1016/j.jclepro.2020.125777_bib16) 2020; 242
Zhou (10.1016/j.jclepro.2020.125777_bib30) 2018; 31
Kant (10.1016/j.jclepro.2020.125777_bib11) 2014; 83
Li (10.1016/j.jclepro.2020.125777_bib15) 2019; 30
Li (10.1016/j.jclepro.2020.125777_bib14) 2019; 104
Ma (10.1016/j.jclepro.2020.125777_bib18) 2018; 199
Sreeram (10.1016/j.jclepro.2020.125777_bib23) 2006; 30
Yu (10.1016/j.jclepro.2020.125777_bib27) 2016; 139
Mirjalili (10.1016/j.jclepro.2020.125777_bib22) 2017; 114
Chen (10.1016/j.jclepro.2020.125777_bib6) 2019; 175
Zhou (10.1016/j.jclepro.2020.125777_bib31) 2019; 208
Bache (10.1016/j.jclepro.2020.125777_bib1)
Kavousi-Fard (10.1016/j.jclepro.2020.125777_bib12) 2014; 41
Cao (10.1016/j.jclepro.2020.125777_bib2) 2016; 85
Liu (10.1016/j.jclepro.2020.125777_bib17) 2016; 22
Garg (10.1016/j.jclepro.2020.125777_bib8) 2015; 102
Yi (10.1016/j.jclepro.2020.125777_bib26) 2015; 95
Zhang (10.1016/j.jclepro.2020.125777_bib28) 2010
D’Addona (10.1016/j.jclepro.2020.125777_bib7) 2013; 7
Li (10.1016/j.jclepro.2020.125777_bib13) 2015; 26
Zhang (10.1016/j.jclepro.2020.125777_bib29) 2017; 31
Xiao (10.1016/j.jclepro.2020.125777_bib25) 2019; 187
Mirjalili (10.1016/j.jclepro.2020.125777_bib20) 2016; 27
Chang (10.1016/j.jclepro.2020.125777_bib5) 2011; 2
Heidari (10.1016/j.jclepro.2020.125777_bib9) 2019; 97
References_xml – volume: 199
  start-page: 529
  year: 2018
  end-page: 537
  ident: bib18
  article-title: An optimization approach of selective laser sintering considering energy consumption and material cost
  publication-title: J. Clean. Prod.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib22
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
– volume: 2
  start-page: 389
  year: 2011
  end-page: 396
  ident: bib5
  article-title: LIBSVM: a library for support vector machines
  publication-title: Acm T Intel Syst. Tec.
– volume: 166
  start-page: 142
  year: 2019
  end-page: 156
  ident: bib24
  article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning
  publication-title: Energy
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: bib19
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Software
– year: 2013
  ident: bib1
  article-title: UCI machine learning repository
– volume: 95
  start-page: 256
  year: 2015
  end-page: 264
  ident: bib26
  article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing
  publication-title: J. Clean. Prod.
– volume: 7
  start-page: 323
  year: 2013
  end-page: 328
  ident: bib7
  article-title: Genetic algorithm-based optimization of cutting parameters in turning processes
  publication-title: Procedia CIRP
– volume: 30
  start-page: 123
  year: 2019
  end-page: 138
  ident: bib15
  article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling
  publication-title: J. Intell. Manuf.
– volume: 31
  start-page: 406
  year: 2018
  end-page: 425
  ident: bib30
  article-title: Feature-based carbon emission quantitation strategy for the part machining process
  publication-title: Int. J. Comput. Integrated Manuf.
– volume: 85
  start-page: 2657
  year: 2016
  end-page: 2667
  ident: bib2
  article-title: A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 26
  start-page: 911
  year: 2015
  end-page: 922
  ident: bib13
  article-title: A quantitative approach to analyze carbon emissions of CNC-based machining systems
  publication-title: J. Intell. Manuf.
– start-page: 231
  year: 2010
  end-page: 234
  ident: bib28
  article-title: Selection of optimal process parameters for gear hobbing under cold air minimum quantity lubrication cutting environment
  publication-title: Proceedings of the 36th International Matador Conference
– volume: 187
  year: 2019
  ident: bib25
  article-title: Multi-component energy modeling and optimization for sustainable dry gear hobbing
  publication-title: Energy
– volume: 93
  start-page: 4099
  year: 2017
  end-page: 4110
  ident: bib3
  article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 2502
  year: 2018
  end-page: 2513
  ident: bib4
  article-title: Optimization of cutting parameters for high-speed gear hobbing based on small sample problem
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 41
  start-page: 6047
  year: 2014
  end-page: 6056
  ident: bib12
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 1
  year: 2016
  end-page: 17
  ident: bib21
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– volume: 104
  start-page: 2657
  year: 2019
  end-page: 2668
  ident: bib14
  article-title: Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 22
  start-page: 1550
  year: 2016
  end-page: 1557
  ident: bib17
  article-title: On-line detecting method and system of multi-source energy state for machine tools
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 139
  start-page: 473
  year: 2016
  end-page: 487
  ident: bib27
  article-title: Planning carbon dioxide mitigation of Qingdao’s electric power systems under dual uncertainties
  publication-title: J. Clean. Prod.
– volume: 208
  start-page: 937
  year: 2019
  end-page: 950
  ident: bib31
  article-title: Cutting parameter optimization for machining operations considering carbon emissions
  publication-title: J. Clean. Prod.
– volume: 30
  start-page: 1030
  year: 2006
  end-page: 1039
  ident: bib23
  article-title: Optimization of cutting parameters in micro end milling operations in dry cutting condition using genetic algorithms
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib9
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generat. Comput. Syst.
– volume: 175
  start-page: 1021
  year: 2019
  end-page: 1037
  ident: bib6
  article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time
  publication-title: Energy
– volume: 102
  start-page: 246
  year: 2015
  end-page: 263
  ident: bib8
  article-title: Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: bib20
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– volume: 83
  start-page: 151
  year: 2014
  end-page: 164
  ident: bib11
  article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining
  publication-title: J. Clean. Prod.
– volume: 242
  year: 2020
  ident: bib16
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 2951
  year: 2017
  end-page: 2960
  ident: bib29
  article-title: An adaptive parameter optimization model and system for sustainable gear dry hobbing in batch production
  publication-title: J. Mech. Sci. Technol.
– volume: 57
  start-page: 17
  year: 2008
  end-page: 20
  ident: bib10
  article-title: Carbon emissions and CES™ in manufacturing
  publication-title: CIRP Ann. - Manuf. Technol.
– volume: 30
  start-page: 1030
  issue: 11–12
  year: 2006
  ident: 10.1016/j.jclepro.2020.125777_bib23
  article-title: Optimization of cutting parameters in micro end milling operations in dry cutting condition using genetic algorithms
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0148-0
– volume: 41
  start-page: 6047
  issue: 13
  year: 2014
  ident: 10.1016/j.jclepro.2020.125777_bib12
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.053
– volume: 24
  start-page: 2502
  issue: 10
  year: 2018
  ident: 10.1016/j.jclepro.2020.125777_bib4
  article-title: Optimization of cutting parameters for high-speed gear hobbing based on small sample problem
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 93
  start-page: 4099
  issue: 9–12
  year: 2017
  ident: 10.1016/j.jclepro.2020.125777_bib3
  article-title: A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0823-y
– volume: 95
  start-page: 256
  year: 2015
  ident: 10.1016/j.jclepro.2020.125777_bib26
  article-title: Multi-objective parameter optimization of CNC machining for low carbon manufacturing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.02.076
– volume: 57
  start-page: 17
  issue: 1
  year: 2008
  ident: 10.1016/j.jclepro.2020.125777_bib10
  article-title: Carbon emissions and CES™ in manufacturing
  publication-title: CIRP Ann. - Manuf. Technol.
  doi: 10.1016/j.cirp.2008.03.117
– volume: 166
  start-page: 142
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib24
  article-title: A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.191
– start-page: 231
  year: 2010
  ident: 10.1016/j.jclepro.2020.125777_bib28
  article-title: Selection of optimal process parameters for gear hobbing under cold air minimum quantity lubrication cutting environment
– volume: 175
  start-page: 1021
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib6
  article-title: Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.157
– volume: 208
  start-page: 937
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib31
  article-title: Cutting parameter optimization for machining operations considering carbon emissions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.191
– volume: 199
  start-page: 529
  year: 2018
  ident: 10.1016/j.jclepro.2020.125777_bib18
  article-title: An optimization approach of selective laser sintering considering energy consumption and material cost
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.07.185
– volume: 242
  year: 2020
  ident: 10.1016/j.jclepro.2020.125777_bib16
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118447
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.jclepro.2020.125777_bib22
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 187
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib25
  article-title: Multi-component energy modeling and optimization for sustainable dry gear hobbing
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115911
– volume: 7
  start-page: 323
  year: 2013
  ident: 10.1016/j.jclepro.2020.125777_bib7
  article-title: Genetic algorithm-based optimization of cutting parameters in turning processes
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.05.055
– volume: 2
  start-page: 389
  issue: 3
  year: 2011
  ident: 10.1016/j.jclepro.2020.125777_bib5
  article-title: LIBSVM: a library for support vector machines
  publication-title: Acm T Intel Syst. Tec.
– volume: 102
  start-page: 246
  year: 2015
  ident: 10.1016/j.jclepro.2020.125777_bib8
  article-title: Improving environmental sustainability by formulation of generalized power consumption models using an ensemble based multi-gene genetic programming approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.04.068
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.jclepro.2020.125777_bib19
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.jclepro.2020.125777_bib20
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 22
  start-page: 1550
  issue: 6
  year: 2016
  ident: 10.1016/j.jclepro.2020.125777_bib17
  article-title: On-line detecting method and system of multi-source energy state for machine tools
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 46
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.jclepro.2020.125777_bib21
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– volume: 104
  start-page: 2657
  issue: 5–8
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib14
  article-title: Exergy efficiency optimization model of motorized spindle system for high-speed dry hobbing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-04134-x
– volume: 85
  start-page: 2657
  issue: 9–12
  year: 2016
  ident: 10.1016/j.jclepro.2020.125777_bib2
  article-title: A continuous optimization decision making of process parameters in high-speed gear hobbing using IBPNN/DE algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-8114-y
– ident: 10.1016/j.jclepro.2020.125777_bib1
– volume: 139
  start-page: 473
  year: 2016
  ident: 10.1016/j.jclepro.2020.125777_bib27
  article-title: Planning carbon dioxide mitigation of Qingdao’s electric power systems under dual uncertainties
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.08.064
– volume: 31
  start-page: 2951
  issue: 6
  year: 2017
  ident: 10.1016/j.jclepro.2020.125777_bib29
  article-title: An adaptive parameter optimization model and system for sustainable gear dry hobbing in batch production
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-017-0538-x
– volume: 30
  start-page: 123
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib15
  article-title: A comprehensive approach to parameters optimization of energy-aware CNC milling
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-016-1233-y
– volume: 83
  start-page: 151
  year: 2014
  ident: 10.1016/j.jclepro.2020.125777_bib11
  article-title: Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.07.073
– volume: 31
  start-page: 406
  issue: 4–5
  year: 2018
  ident: 10.1016/j.jclepro.2020.125777_bib30
  article-title: Feature-based carbon emission quantitation strategy for the part machining process
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2017.1328561
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.jclepro.2020.125777_bib9
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 26
  start-page: 911
  issue: 5
  year: 2015
  ident: 10.1016/j.jclepro.2020.125777_bib13
  article-title: A quantitative approach to analyze carbon emissions of CNC-based machining systems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0812-4
SSID ssj0017074
Score 2.4147558
Snippet Low carbonization is an inevitable pathway toward the sustainable development of gear machining. Reliable and reasonable prediction of hobbing parameters can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125777
SubjectTerms algorithms
carbon
carbonization
cutting
data collection
emissions
energy
Gear hobbing
hybrids
Improved multi-objective Harris hawks optimization
Low-carbon
Parameter prediction
prediction
regression analysis
sustainable development
ε-support vector regression
Title A three-stage parameter prediction approach for low-carbon gear hobbing
URI https://dx.doi.org/10.1016/j.jclepro.2020.125777
https://www.proquest.com/docview/2511193363
Volume 289
WOSCitedRecordID wos000620272200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFO0PGQkbsglaydxfFyq8jpUSBSxnCLHdpZdlaTdB5R_z4xjJwsFFZC4RLtWbCeez5OxPfMNIU-4rJXiFWepsglccsd0VVfMOAuIMqNEO-uTTcjDw2IyUW9DdMnSpxOQTVOcnamT_ypqKANhY-jsX4i7bxQK4DcIHa4gdrj-keDRT2PhHAOzb-qeIrX3Z3R5QTYAOwuJwQORuPcxPG6_MqMXFZRPkdXnU1tV8Xt23mqFznTjW_NMsRun-Pva77p-cDPbhur-vMPjBEA4X_e34l-vYp633wZ0fnTh_L-ZnsYHCPsR3Dtk8WTYJIuBMoNXUtxtzDMeWK87XVtIxUYyMGEHZcy7hELnFHu3xzDfm8NrwhvCwp4jM0YmQxKYHzmz32F_2B1PMBJY5JfJNpeZAs29PX59MHnTHzTJpCPqjs83BHk9-2VnvzNffvqQe-vk6Aa5HgRExx0cbpJLrrlFrm2QTd4mL8d0Axi0BwYdgEEjMCgAgw7AoAgMGoBxh7x_cXC0_4qFNBrMiJSvmE6UTHIjXO5SjJSuHdiktdZSC66TUVVlGuaoSgtjZW0KWI_nXObKudSCbZcpcZdsNW3j7hGaZdyqwmTQrky1k4UQkltTIyleLWq7Q9I4OqUJHPOY6uS4jM6E8zIMaomDWnaDukP2-monHcnKRRWKOPRlsBQ7C7AEvFxU9XEUVQmaFI_HYNq062WJi21Yzohc7P578_fJ1WFSPCBbq8XaPSRXzJfVbLl4FND3HbgznDs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+parameter+prediction+approach+for+low-carbon+gear+hobbing&rft.jtitle=Journal+of+cleaner+production&rft.au=Cao%2C+Weidong&rft.au=Ni%2C+Jianjun&rft.au=Jiang%2C+Boyan&rft.au=Ye%2C+Changqing&rft.date=2021-03-20&rft.pub=Elsevier+Ltd&rft.issn=0959-6526&rft.eissn=1879-1786&rft.volume=289&rft_id=info:doi/10.1016%2Fj.jclepro.2020.125777&rft.externalDocID=S0959652620358236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon