Theory of higher order interpretations and application to Basic Feasible Functions

Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 16, Issue 4; H. 4
Hauptverfasser: Hainry, Emmanuel, Péchoux, Romain
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science Association 14.12.2020
Logical Methods in Computer Science e.V
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that is well-suited for the complexity analysis of this programming language. The interpretation domain is a complete lattice and, consequently, we express program interpretation in terms of a least fixpoint. As an application, by bounding interpretations by higher order polynomials, we characterize Basic Feasible Functions at any order.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-16(4:14)2020