Theory of higher order interpretations and application to Basic Feasible Functions

Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 16, Issue 4; číslo 4
Hlavní autoři: Hainry, Emmanuel, Péchoux, Romain
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science Association 14.12.2020
Logical Methods in Computer Science e.V
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Interpretation methods and their restrictions to polynomials have been deeply used to control the termination and complexity of first-order term rewrite systems. This paper extends interpretation methods to a pure higher order functional language. We develop a theory of higher order functions that is well-suited for the complexity analysis of this programming language. The interpretation domain is a complete lattice and, consequently, we express program interpretation in terms of a least fixpoint. As an application, by bounding interpretations by higher order polynomials, we characterize Basic Feasible Functions at any order.
ISSN:1860-5974
1860-5974
DOI:10.23638/LMCS-16(4:14)2020