A study of function space topologies for multifunctions
Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)...
Uloženo v:
| Vydáno v: | Applied general topology Ročník 18; číslo 2; s. 331 - 344 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Universitat Politècnica de València
01.01.2017
|
| Témata: | |
| ISSN: | 1576-9402, 1989-4147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)-topology on the class of continuous multifunctions is found to be upper admissible, while the compact-open topology is upper splitting. The point-open topology is the coarsest topology which is coordinately admissible, it is also the finest topology which is coordinately splitting. |
|---|---|
| ISSN: | 1576-9402 1989-4147 |
| DOI: | 10.4995/agt.2017.7149 |