A study of function space topologies for multifunctions

Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied general topology Ročník 18; číslo 2; s. 331 - 344
Hlavní autoři: Gupta, Ankit, Sarma, Ratna Dev
Médium: Journal Article
Jazyk:angličtina
Vydáno: Universitat Politècnica de València 01.01.2017
Témata:
ISSN:1576-9402, 1989-4147
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)-topology on the class of continuous multifunctions is found to be upper admissible, while the compact-open topology is upper splitting. The point-open topology is the coarsest topology which is coordinately admissible, it is also the finest topology which is coordinately splitting. 
ISSN:1576-9402
1989-4147
DOI:10.4995/agt.2017.7149