A study of function space topologies for multifunctions
Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)...
Uložené v:
| Vydané v: | Applied general topology Ročník 18; číslo 2; s. 331 - 344 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Universitat Politècnica de València
01.01.2017
|
| Predmet: | |
| ISSN: | 1576-9402, 1989-4147 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Function space topologies are investigated for the class of continuous multifunctions. Using the notion of continuous convergence, splittingness and admissibility are discussed for the topologies on continuous multifunctions. The theory of net of sets is further developed for this purpose. The (τ,μ)-topology on the class of continuous multifunctions is found to be upper admissible, while the compact-open topology is upper splitting. The point-open topology is the coarsest topology which is coordinately admissible, it is also the finest topology which is coordinately splitting. |
|---|---|
| ISSN: | 1576-9402 1989-4147 |
| DOI: | 10.4995/agt.2017.7149 |