Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field

•Heat transfer enhancement techniques are applied to improve the heat exchanger devices which the spirally fluted tube has been used as one of passive heat transfer enhancement techniques to facilitate the desire flow modification for augmenting heat transfer. The spirally fluted tubes are the most...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 118; s. 1152 - 1159
Hlavní autoři: Naphon, P., Wiriyasart, S., Arisariyawong, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2018
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Heat transfer enhancement techniques are applied to improve the heat exchanger devices which the spirally fluted tube has been used as one of passive heat transfer enhancement techniques to facilitate the desire flow modification for augmenting heat transfer. The spirally fluted tubes are the most widely used tubes in several heat transfer applications. There are many papers presented the thermal devices analysis by using artificial neural network. However, there is not paper concerned the heat transfer characteristics and friction factor of the spirally coiled tube. The objective of this paper is to analyze and predict the pulsating nanofluids heat transfer coefficient and friction factor of the spirally coiled tube with magnetic field effect using artificial neural model. This paper is continuously performed of Naphon et al. [34], which it analyze the Nusselt number and friction factor of nanofluids pulsating flow in the spirally coiled tube with the presence magnetic field effect of 4,6 magnet bars using artificial neural network. Four different training algorithms of Levenberg-Marquardt Backwardpropagation (LMB), Scaled Conjugate Gradient Backpropagation (SCGB), Bayesian Regulation Backpropagation (BRB), and Resilient Backpropagation (RB) are applied to adjust errors for obtaining the optimal ANN model. The optimal ANN approach has been applied to show its capability in the representation of thermal performance of the spirally coiled tube with magnetic field. The application of artificial neural network to analyze the pulsating nanofluids heat transfer and pressure drop in the spirally coiled tube with magnetic field are presented. Four different training algorithms of Levenberg-Marquardt Backwardpropagation (LMB), Scaled Conjugate Gradient Backpropagation (SCGB), Bayesian Regulation Backpropagation (BRB), and Resilient Backpropagation (RB) are applied to adjust errors for obtaining the optimal ANN model. The results obtained from the artificial neural network are compared those from the present experiment. It is found that the Levenberg- Marquardt Backpropagation algorithm gives the minimum MSE, and maximum R as compared with other training algorithms. Based on the optimal ANN model, the majority of the data falls within ±2.5%, ±5% of the Nusselt number and friction factor, respectively. The obtained optimal ANN has been applied to predict the thermal performance of the spirally coiled tube with magnetic field.
AbstractList •Heat transfer enhancement techniques are applied to improve the heat exchanger devices which the spirally fluted tube has been used as one of passive heat transfer enhancement techniques to facilitate the desire flow modification for augmenting heat transfer. The spirally fluted tubes are the most widely used tubes in several heat transfer applications. There are many papers presented the thermal devices analysis by using artificial neural network. However, there is not paper concerned the heat transfer characteristics and friction factor of the spirally coiled tube. The objective of this paper is to analyze and predict the pulsating nanofluids heat transfer coefficient and friction factor of the spirally coiled tube with magnetic field effect using artificial neural model. This paper is continuously performed of Naphon et al. [34], which it analyze the Nusselt number and friction factor of nanofluids pulsating flow in the spirally coiled tube with the presence magnetic field effect of 4,6 magnet bars using artificial neural network. Four different training algorithms of Levenberg-Marquardt Backwardpropagation (LMB), Scaled Conjugate Gradient Backpropagation (SCGB), Bayesian Regulation Backpropagation (BRB), and Resilient Backpropagation (RB) are applied to adjust errors for obtaining the optimal ANN model. The optimal ANN approach has been applied to show its capability in the representation of thermal performance of the spirally coiled tube with magnetic field. The application of artificial neural network to analyze the pulsating nanofluids heat transfer and pressure drop in the spirally coiled tube with magnetic field are presented. Four different training algorithms of Levenberg-Marquardt Backwardpropagation (LMB), Scaled Conjugate Gradient Backpropagation (SCGB), Bayesian Regulation Backpropagation (BRB), and Resilient Backpropagation (RB) are applied to adjust errors for obtaining the optimal ANN model. The results obtained from the artificial neural network are compared those from the present experiment. It is found that the Levenberg- Marquardt Backpropagation algorithm gives the minimum MSE, and maximum R as compared with other training algorithms. Based on the optimal ANN model, the majority of the data falls within ±2.5%, ±5% of the Nusselt number and friction factor, respectively. The obtained optimal ANN has been applied to predict the thermal performance of the spirally coiled tube with magnetic field.
Author Arisariyawong, T.
Wiriyasart, S.
Naphon, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Naphon
  fullname: Naphon, P.
  email: paisarnn@g.swu.ac.th
– sequence: 2
  givenname: S.
  surname: Wiriyasart
  fullname: Wiriyasart, S.
– sequence: 3
  givenname: T.
  surname: Arisariyawong
  fullname: Arisariyawong, T.
BookMark eNqVkLtuGzEQRYnAASI7-QeWaXbN4Ur76GIYcR4w4sapCYocWqNQpEByI-hf_LGhbFdOk1QXg7k4gznn7CzEgIx9BNGCgP5y29J2g7rsdM4l6ZAdplYKGFqAVkzwhi1gHKZGwjidsYWom2bqQLxj5zlvT6NY9gv2eJUKOTKkPQ84p6coh5h-cR20P2bKvGyQ72efdaHwwH_MOaMvPMy7NabastwlMoVi4E6bEhOPjt_Tnbw86FIbQYfo_Ew2cwpPsLynesgfuYnk0fIyr5EfqGz4Tj_U82S4I_T2PXvrtM_44SUv2M-bz_fXX5vbuy_frq9uG9MtZWmmVT_AuAQ3oJVOSFxPgzagh9EIOa0sgh5NJyX23ThB3_U41q6wRg5awMp0F-zmmWtSzDmhU4aKPn1UzZJXINTJudqqv52rk3MFoKrzCvr0CrRPtNPp-D-I788IrA__prrNhjAYtJTQFGUj_TvsD16StBk
CitedBy_id crossref_primary_10_1007_s10973_023_12171_8
crossref_primary_10_1080_01430750_2025_2487043
crossref_primary_10_1007_s10891_021_02336_3
crossref_primary_10_1016_j_applthermaleng_2021_117424
crossref_primary_10_1002_apj_2320
crossref_primary_10_1016_j_applthermaleng_2018_09_053
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_014
crossref_primary_10_1016_j_applthermaleng_2025_125764
crossref_primary_10_1016_j_enconman_2019_04_047
crossref_primary_10_1038_s41598_022_13519_0
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_088
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119211
crossref_primary_10_1016_j_cherd_2021_03_008
crossref_primary_10_1016_j_icheatmasstransfer_2020_104589
crossref_primary_10_1016_j_cjche_2021_03_026
crossref_primary_10_1016_j_cis_2024_103112
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121746
crossref_primary_10_1016_j_powtec_2022_117210
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124169
crossref_primary_10_1016_j_applthermaleng_2019_114545
crossref_primary_10_1016_j_enconman_2019_111877
crossref_primary_10_1007_s00231_019_02576_3
crossref_primary_10_1016_j_egyr_2021_10_121
crossref_primary_10_1007_s10973_025_14117_8
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121617
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_115
crossref_primary_10_1016_j_ijthermalsci_2022_107624
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_131
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119488
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104928
crossref_primary_10_1016_j_solmat_2024_113265
crossref_primary_10_1080_01457632_2021_2009227
crossref_primary_10_1016_j_applthermaleng_2018_12_082
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121285
crossref_primary_10_1016_j_icheatmasstransfer_2022_105984
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118897
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120351
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125203
crossref_primary_10_1016_j_physa_2019_122126
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120397
crossref_primary_10_1140_epjp_s13360_020_00964_x
crossref_primary_10_1007_s11814_020_0566_6
crossref_primary_10_1016_j_ijheatfluidflow_2024_109712
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127020
crossref_primary_10_1007_s10973_023_12811_z
crossref_primary_10_1016_j_jppr_2022_08_002
crossref_primary_10_1177_13506501221074809
crossref_primary_10_1080_01457632_2022_2068219
crossref_primary_10_1016_j_icheatmasstransfer_2020_104882
crossref_primary_10_1016_j_ijheatmasstransfer_2019_01_106
crossref_primary_10_1016_j_powtec_2022_117472
crossref_primary_10_1080_23311916_2024_2430431
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_017
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_073
crossref_primary_10_1088_2631_8695_adbe28
crossref_primary_10_1016_j_ijthermalsci_2021_107149
crossref_primary_10_1007_s10973_019_08789_2
Cites_doi 10.1016/j.ijthermalsci.2010.09.006
10.1016/j.jmmm.2017.01.016
10.1016/j.physe.2016.11.035
10.1016/j.applthermaleng.2006.07.036
10.1016/j.nanoen.2011.11.007
10.1016/j.ijheatmasstransfer.2007.03.043
10.1016/j.petrol.2010.02.001
10.1016/j.ijheatmasstransfer.2010.11.039
10.1016/j.icheatmasstransfer.2017.03.014
10.1016/j.ijheatmasstransfer.2017.07.080
10.1016/j.ijthermalsci.2010.11.003
10.1016/j.powtec.2015.04.058
10.1016/j.physe.2016.08.022
10.1016/j.powtec.2015.03.005
10.1016/S0017-9310(99)00369-5
10.1016/j.physe.2017.06.015
10.1016/S1359-4311(02)00155-2
10.1016/j.icheatmasstransfer.2015.08.015
10.1016/j.physe.2016.06.006
10.1016/j.physe.2016.10.013
10.1016/j.fluid.2014.03.031
10.1016/j.expthermflusci.2016.03.026
10.1016/j.expthermflusci.2016.07.011
10.1016/j.icheatmasstransfer.2016.05.013
10.1016/j.ijthermalsci.2008.11.009
10.1016/j.icheatmasstransfer.2016.02.010
10.1016/j.icheatmasstransfer.2006.04.003
10.1016/j.enbuild.2011.03.008
10.1016/j.ijheatmasstransfer.2013.08.013
10.1016/j.icheatmasstransfer.2016.03.008
10.1016/j.physe.2016.11.021
10.1016/j.ijthermalsci.2008.03.012
10.1080/08916159808946559
10.1016/j.icheatmasstransfer.2009.03.009
10.1016/j.ijheatmasstransfer.2006.12.017
10.1016/j.ijheatmasstransfer.2008.10.036
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2017.11.091
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 1159
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2017_11_091
S0017931017340346
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c342t-95671841f7ed2f02eb97ac1a78c0295de1a8c322e63891636e81f70dc27a015c3
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423647700099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Tue Nov 18 22:32:04 EST 2025
Sat Nov 29 07:35:04 EST 2025
Fri Feb 23 02:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spirally coiled tube
Pulsating nanofluids flow
Artificial neural network
Magnetic field
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-95671841f7ed2f02eb97ac1a78c0295de1a8c322e63891636e81f70dc27a015c3
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_ijheatmasstransfer_2017_11_091
crossref_primary_10_1016_j_ijheatmasstransfer_2017_11_091
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2017_11_091
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Sunden, Wang, Tang (b0080) 2009; 52
Esfe, Afrand, Rostamian, Toghraie (b0020) 2016; 80
Aghanajafi, Toghraie, Mehmandoust (b0050) 2017; 85
Y. Xuan, W. Roetzel, Conceptions of heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707.
Naphon, Wiriyasart (b0170) 2017; 115
Esfe, Afrand, Gharehkhani, Rostamiand, Toghraie, Dahari (b0010) 2016; 76
Santra, Chakraborty, Sen (b0085) 2009; 48
Pak, Cho (b0175) 1998; 11
Zdaniuk, Chamra, Walters (b0065) 2007; 50
Wu, Zhang, Zhang, Zhou, Wang (b0120) 2011; 43
Zhao, Wen, Yang, Li, Wang (b0140) 2015; 281
Toghraie, Mokhtari, Afrand (b0015) 2016; 84
Gao, Sun, Zhou, Shi, Zhao, Wang (b0095) 2009; 48
Alipour, Karimipour, Safaei, Toghraie, Ali (b0030) 2017; 88
Ariana, Vaferi, Karimi (b0155) 2015; 278
Taymaz, Islamoglu (b0090) 2009; 36
Mehrabi, Sharifpur, Meyer (b0135) 2013; 67
Ermis, Erek, Dincer (b0070) 2007; 50
Afrand, Toghraie, Karimipour, Wongwises (b0040) 2017; 430
Ghahdarijani, Hormozi, Asl (b0125) 2017; 84
Haykin (b0200) 1994
Ali, Toghraie, Karimipour, Marzban, Ahmadi (b0025) 2017; 86
Nazari, Toghraie (b0045) 2017; 87
Ahmadloo, Azizi (b0160) 2016; 74
Papari, Yousefi, Moghadasi, Karimi, Campo (b0115) 2011; 50
Kumar, Balaji (b0110) 2011; 50
Islamoglu (b0055) 2003; 23
Longon, Zilio, Ceseracciu, Reggiani (b0130) 2012; 1
Atashrouz, Pazuki, Alimoradi (b0145) 2014; 372
Dalkilic, Çebi, Celen, Yildiz, Acikgoz, Jumpholkul, Bayrak, Surana, Wongwises (b0165) 2016; 73
Shamsi, Ali, Marzban, Toghraie, Mashayekhi (b0035) 2017; 93
Yigit, Ertunc (b0060) 2006; 33
Zarringhalam, Karimipour, Toghraie (b0005) 2016; 76
Esfe, Rostamian, Afrand, Karimipour, Hassani (b0150) 2015; 68
Hojjat, Etemad, Bagheri, Thibault (b0105) 2011; 54
Xie, Wang, Zeng, Luo (b0075) 2007; 27
Drew, Passman (b0185) 1999
Bar, Bandyopadhyay, Biswas, Das (b0100) 2010; 71
Maxwell (b0190) 1881
Coleman, Steele (b0195) 1989
Zarringhalam (10.1016/j.ijheatmasstransfer.2017.11.091_b0005) 2016; 76
Hojjat (10.1016/j.ijheatmasstransfer.2017.11.091_b0105) 2011; 54
Maxwell (10.1016/j.ijheatmasstransfer.2017.11.091_b0190) 1881
Afrand (10.1016/j.ijheatmasstransfer.2017.11.091_b0040) 2017; 430
Taymaz (10.1016/j.ijheatmasstransfer.2017.11.091_b0090) 2009; 36
Bar (10.1016/j.ijheatmasstransfer.2017.11.091_b0100) 2010; 71
Ahmadloo (10.1016/j.ijheatmasstransfer.2017.11.091_b0160) 2016; 74
Esfe (10.1016/j.ijheatmasstransfer.2017.11.091_b0010) 2016; 76
Naphon (10.1016/j.ijheatmasstransfer.2017.11.091_b0170) 2017; 115
Toghraie (10.1016/j.ijheatmasstransfer.2017.11.091_b0015) 2016; 84
Ghahdarijani (10.1016/j.ijheatmasstransfer.2017.11.091_b0125) 2017; 84
Nazari (10.1016/j.ijheatmasstransfer.2017.11.091_b0045) 2017; 87
Alipour (10.1016/j.ijheatmasstransfer.2017.11.091_b0030) 2017; 88
Gao (10.1016/j.ijheatmasstransfer.2017.11.091_b0095) 2009; 48
Dalkilic (10.1016/j.ijheatmasstransfer.2017.11.091_b0165) 2016; 73
Xie (10.1016/j.ijheatmasstransfer.2017.11.091_b0080) 2009; 52
Xie (10.1016/j.ijheatmasstransfer.2017.11.091_b0075) 2007; 27
Atashrouz (10.1016/j.ijheatmasstransfer.2017.11.091_b0145) 2014; 372
Esfe (10.1016/j.ijheatmasstransfer.2017.11.091_b0020) 2016; 80
Pak (10.1016/j.ijheatmasstransfer.2017.11.091_b0175) 1998; 11
Shamsi (10.1016/j.ijheatmasstransfer.2017.11.091_b0035) 2017; 93
Yigit (10.1016/j.ijheatmasstransfer.2017.11.091_b0060) 2006; 33
Zdaniuk (10.1016/j.ijheatmasstransfer.2017.11.091_b0065) 2007; 50
Aghanajafi (10.1016/j.ijheatmasstransfer.2017.11.091_b0050) 2017; 85
Santra (10.1016/j.ijheatmasstransfer.2017.11.091_b0085) 2009; 48
Ariana (10.1016/j.ijheatmasstransfer.2017.11.091_b0155) 2015; 278
Ermis (10.1016/j.ijheatmasstransfer.2017.11.091_b0070) 2007; 50
Kumar (10.1016/j.ijheatmasstransfer.2017.11.091_b0110) 2011; 50
Longon (10.1016/j.ijheatmasstransfer.2017.11.091_b0130) 2012; 1
Haykin (10.1016/j.ijheatmasstransfer.2017.11.091_b0200) 1994
Papari (10.1016/j.ijheatmasstransfer.2017.11.091_b0115) 2011; 50
Islamoglu (10.1016/j.ijheatmasstransfer.2017.11.091_b0055) 2003; 23
Drew (10.1016/j.ijheatmasstransfer.2017.11.091_b0185) 1999
Coleman (10.1016/j.ijheatmasstransfer.2017.11.091_b0195) 1989
Esfe (10.1016/j.ijheatmasstransfer.2017.11.091_b0150) 2015; 68
Ali (10.1016/j.ijheatmasstransfer.2017.11.091_b0025) 2017; 86
Mehrabi (10.1016/j.ijheatmasstransfer.2017.11.091_b0135) 2013; 67
10.1016/j.ijheatmasstransfer.2017.11.091_b0180
Wu (10.1016/j.ijheatmasstransfer.2017.11.091_b0120) 2011; 43
Zhao (10.1016/j.ijheatmasstransfer.2017.11.091_b0140) 2015; 281
References_xml – volume: 430
  start-page: 22
  year: 2017
  end-page: 28
  ident: b0040
  article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 80
  start-page: 384
  year: 2016
  end-page: 390
  ident: b0020
  article-title: Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions
  publication-title: Exp. Thermal Fluid Sci.
– volume: 54
  start-page: 1017
  year: 2011
  end-page: 1023
  ident: b0105
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
– volume: 67
  start-page: 646
  year: 2013
  end-page: 653
  ident: b0135
  article-title: Modelling and multi-objective optimization of the convective heat transfer characteristics and pressure drop of low concentration TiO
  publication-title: Int. J. Heat Mass Transf.
– volume: 73
  start-page: 33
  year: 2016
  end-page: 42
  ident: b0165
  article-title: Prediction of graphite nano fluids’ dynamic viscosity by means of artificial neural networks
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 48
  start-page: 1311
  year: 2009
  end-page: 1318
  ident: b0085
  article-title: Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network
  publication-title: Int. J. Therm. Sci.
– volume: 1
  start-page: 290
  year: 2012
  end-page: 296
  ident: b0130
  article-title: Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids
  publication-title: Nano Energy
– volume: 88
  start-page: 60
  year: 2017
  end-page: 76
  ident: b0030
  article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel
  publication-title: Physica E
– volume: 71
  start-page: 187
  year: 2010
  end-page: 194
  ident: b0100
  article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components
  publication-title: J. Petrol. Sci. Eng.
– year: 1999
  ident: b0185
  article-title: Theory of Multi Component Fluids
– volume: 50
  start-page: 3163
  year: 2007
  end-page: 3175
  ident: b0070
  article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
  publication-title: Int. J. Heat Mass Transf.
– year: 1881
  ident: b0190
  article-title: A Treatise on electricity and magnetism
– volume: 74
  start-page: 69
  year: 2016
  end-page: 75
  ident: b0160
  article-title: Prediction of thermal conductivity of various nanofluids using artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 23
  start-page: 243
  year: 2003
  end-page: 249
  ident: b0055
  article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger use of an artificial neural network model
  publication-title: Appl. Therm. Eng.
– volume: 68
  start-page: 98
  year: 2015
  end-page: 103
  ident: b0150
  article-title: Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 278
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0155
  article-title: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks
  publication-title: Powder Technol.
– volume: 281
  start-page: 173
  year: 2015
  end-page: 183
  ident: b0140
  article-title: Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks
  publication-title: Powder Technol.
– volume: 76
  start-page: 342
  year: 2016
  end-page: 351
  ident: b0005
  article-title: Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-water nanofluids
  publication-title: Exp. Thermal Fluid Sci.
– volume: 87
  start-page: 134
  year: 2017
  end-page: 140
  ident: b0045
  article-title: Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium
  publication-title: Physica E
– volume: 33
  start-page: 898
  year: 2006
  end-page: 907
  ident: b0060
  article-title: Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 50
  start-page: 4713
  year: 2007
  end-page: 4723
  ident: b0065
  article-title: Correlating heat transfer and friction in helically-finned tubes using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 532
  year: 2011
  end-page: 543
  ident: b0110
  article-title: ANN based estimation of heat generation from multiple protruding heat sources on a vertical plate under conjugate mixed convection
  publication-title: Int. J. Therm. Sci.
– volume: 93
  start-page: 167
  year: 2017
  end-page: 178
  ident: b0035
  article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
  publication-title: Physica E
– volume: 50
  start-page: 44
  year: 2011
  end-page: 52
  ident: b0115
  article-title: Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
  publication-title: Int. J. Therm. Sci.
– year: 1989
  ident: b0195
  article-title: Experimental and Uncertainty Analysis for Engineers
– volume: 372
  start-page: 43
  year: 2014
  end-page: 48
  ident: b0145
  article-title: Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system
  publication-title: Fluid Phase Equilib.
– volume: 115
  start-page: 537
  year: 2017
  end-page: 543
  ident: b0170
  article-title: Pulsating TiO
  publication-title: Int. J. Heat Mass Transf.
– volume: 11
  start-page: 151
  year: 1998
  end-page: 170
  ident: b0175
  article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
  publication-title: Exper. Heat Transf.
– volume: 52
  start-page: 2484
  year: 2009
  end-page: 2497
  ident: b0080
  article-title: Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
– volume: 84
  start-page: 152
  year: 2016
  end-page: 161
  ident: b0015
  article-title: Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels
  publication-title: Physica E
– volume: 86
  start-page: 68
  year: 2017
  end-page: 75
  ident: b0025
  article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluids
  publication-title: Physica E
– volume: 85
  start-page: 103
  year: 2017
  end-page: 108
  ident: b0050
  article-title: Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct
  publication-title: Physica E
– volume: 43
  start-page: 1685
  year: 2011
  end-page: 1693
  ident: b0120
  article-title: Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter
  publication-title: Energy Build.
– year: 1994
  ident: b0200
  article-title: Neural networks
– volume: 48
  start-page: 583
  year: 2009
  end-page: 589
  ident: b0095
  article-title: Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions
  publication-title: Int. J. Therm. Sci.
– volume: 84
  start-page: 11
  year: 2017
  end-page: 19
  ident: b0125
  article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 76
  start-page: 202
  year: 2016
  end-page: 208
  ident: b0010
  article-title: An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 36
  start-page: 614
  year: 2009
  end-page: 617
  ident: b0090
  article-title: Prediction of convection heat transfer in converging–diverging tube for laminar air flowing using back-propagation neural network
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 27
  start-page: 1096
  year: 2007
  end-page: 1104
  ident: b0075
  article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach
  publication-title: Appl. Therm. Eng.
– reference: Y. Xuan, W. Roetzel, Conceptions of heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707.
– volume: 50
  start-page: 44
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0115
  article-title: Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.09.006
– volume: 430
  start-page: 22
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0040
  article-title: A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.01.016
– year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0185
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0200
– volume: 87
  start-page: 134
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0045
  article-title: Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.11.035
– volume: 27
  start-page: 1096
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0075
  article-title: Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.07.036
– volume: 1
  start-page: 290
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0130
  article-title: Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.11.007
– volume: 50
  start-page: 4713
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0065
  article-title: Correlating heat transfer and friction in helically-finned tubes using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.03.043
– volume: 71
  start-page: 187
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0100
  article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2010.02.001
– volume: 54
  start-page: 1017
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0105
  article-title: Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.039
– volume: 84
  start-page: 11
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0125
  article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.03.014
– volume: 115
  start-page: 537
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0170
  article-title: Pulsating TiO2/water nanofluids flow and heat transfer in the spirally coiled tubes with different magnetic field directions
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.080
– volume: 50
  start-page: 532
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0110
  article-title: ANN based estimation of heat generation from multiple protruding heat sources on a vertical plate under conjugate mixed convection
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.11.003
– volume: 281
  start-page: 173
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0140
  article-title: Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.04.058
– volume: 85
  start-page: 103
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0050
  article-title: Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.08.022
– volume: 278
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0155
  article-title: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.03.005
– ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0180
  doi: 10.1016/S0017-9310(99)00369-5
– year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0195
– volume: 93
  start-page: 167
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0035
  article-title: Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
  publication-title: Physica E
  doi: 10.1016/j.physe.2017.06.015
– volume: 23
  start-page: 243
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0055
  article-title: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger use of an artificial neural network model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00155-2
– year: 1881
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0190
– volume: 68
  start-page: 98
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0150
  article-title: Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2015.08.015
– volume: 84
  start-page: 152
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0015
  article-title: Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.06.006
– volume: 86
  start-page: 68
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0025
  article-title: The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluids
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.10.013
– volume: 372
  start-page: 43
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0145
  article-title: Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2014.03.031
– volume: 76
  start-page: 342
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0005
  article-title: Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-water nanofluids
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.03.026
– volume: 80
  start-page: 384
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0020
  article-title: Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.07.011
– volume: 76
  start-page: 202
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0010
  article-title: An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.05.013
– volume: 48
  start-page: 1311
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0085
  article-title: Prediction of heat transfer due to presence of copper–water nanofluid using resilient-propagation neural network
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.11.009
– volume: 73
  start-page: 33
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0165
  article-title: Prediction of graphite nano fluids’ dynamic viscosity by means of artificial neural networks
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.02.010
– volume: 33
  start-page: 898
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0060
  article-title: Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2006.04.003
– volume: 43
  start-page: 1685
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0120
  article-title: Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.03.008
– volume: 67
  start-page: 646
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0135
  article-title: Modelling and multi-objective optimization of the convective heat transfer characteristics and pressure drop of low concentration TiO2/water nanofluids in the turbulent flow regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.08.013
– volume: 74
  start-page: 69
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0160
  article-title: Prediction of thermal conductivity of various nanofluids using artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.03.008
– volume: 88
  start-page: 60
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0030
  article-title: Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel
  publication-title: Physica E
  doi: 10.1016/j.physe.2016.11.021
– volume: 48
  start-page: 583
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0095
  article-title: Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2008.03.012
– volume: 11
  start-page: 151
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0175
  article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
  publication-title: Exper. Heat Transf.
  doi: 10.1080/08916159808946559
– volume: 36
  start-page: 614
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0090
  article-title: Prediction of convection heat transfer in converging–diverging tube for laminar air flowing using back-propagation neural network
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2009.03.009
– volume: 50
  start-page: 3163
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0070
  article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.12.017
– volume: 52
  start-page: 2484
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.11.091_b0080
  article-title: Performance predictions of laminar and turbulent heat transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.10.036
SSID ssj0017046
Score 2.4982998
Snippet •Heat transfer enhancement techniques are applied to improve the heat exchanger devices which the spirally fluted tube has been used as one of passive heat...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1152
SubjectTerms Artificial neural network
Magnetic field
Pulsating nanofluids flow
Spirally coiled tube
Title Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.11.091
Volume 118
WOSCitedRecordID wos000423647700099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqDhAvE5_aGCA_8IAUpaRuE9tPqJqGAKGCREF9izzHnVJl6dQ0-_gv_D3-B_facdPBhDohXtLWSa_s3lP72D6-l5BXIo4HPGYqZIpl4VAlWajiRIUmSpgRmieRzZ_y_RMfj8V0Kr90Oj_9WZjzgpeluLyUZ__V1VAGzsajs7dw99ooFMB7cDpcwe1w3crxo6WV_-BKOAartC9W6h0oH4DEHo-qCxTylCfBuK4qU6wClxzE7iZg8iAnQrTpeJBRTvLPGET1QmFUxVKVi1lR505Ni-bshn1RXAV6Af1MFqzqY-MWeU_VSYknJQMrltskw9dXIzdiWOAAYetxCtQes1gAt25VxGOFenpLf3vtstEyv1KVcgeQvvZaHOdQCLcuGunxpLe5ztEXrdDL990wnspBI4L1fXfTebveF9gt2xjJ4aO8cZRwCxbzXj7H9mBTfEtQ68d7GNbV5RC7HqD7t4FzLWf0Srl5-qfFFC3CPCuNMMbCDuOxFF2yM_pwNP243u7ikTtR5pt4j7xuhYh_r-XNfGqDI00ekN1mckNHDpQPSceUj8hdKzLW1WPyo4UmddCkDTSphyYFLNE1NGkDTeqgCU9l1EOTOmjSxYwiNN9YYNIWmDQvrTEPTOqASRGYFIFJPTCpBeYT8u3d0eTwfdhkBwn1YMhWIUzsgVcN-zNuMjaLmDmWXOm-4kJHTMaZ6SuhYbgyyMlh1pEYAc9GmWZcAQfWg6ekWy5Ks0co3IuNkSZSkg21UEpHWplEgEkgeVGyT9763zjVTeh8zOBSpNt6fp_ItYUzF0bmFt899G5NG1rs6G4KeN7ayrN_qMEBud_-I5-T7mpZmxfkjj5f5dXyZQPmXwuZ8xo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+analysis+the+pulsating+Nusselt+number+and+friction+factor+of+TiO2%2Fwater+nanofluids+in+the+spirally+coiled+tube+with+magnetic+field&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Naphon%2C+P.&rft.au=Wiriyasart%2C+S.&rft.au=Arisariyawong%2C+T.&rft.date=2018-03-01&rft.issn=0017-9310&rft.volume=118&rft.spage=1152&rft.epage=1159&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2017.11.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2017_11_091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon