PredMaX: Predictive maintenance with explainable deep convolutional autoencoders
A novel data exploration framework (PredMaX) for predictive maintenance is introduced in the present paper. PredMaX offers automatic time period clustering and efficient identification of sensitive machine parts by exploiting hidden knowledge in high-dimensional, unlabeled temporal data. Condition m...
Uloženo v:
| Vydáno v: | Advanced engineering informatics Ročník 54; s. 101778 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2022
|
| Témata: | |
| ISSN: | 1474-0346, 1873-5320 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!