Inverse source problem for the hyperbolic equation with a time-dependent principal part
In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of...
Uloženo v:
| Vydáno v: | Journal of Differential Equations Ročník 262; číslo 1; s. 653 - 681 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
05.01.2017
|
| Témata: | |
| ISSN: | 0022-0396, 1090-2732 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of partial boundary and interior observation data. Numerically, we adopt the classical Tikhonov regularization to reformulate the inverse problem into a related optimization problem, for which we develop an iterative thresholding algorithm by using the corresponding adjoint system. Numerical examples up to three spatial dimensions are presented to demonstrate the accuracy and efficiency of the proposed algorithm. |
|---|---|
| ISSN: | 0022-0396 1090-2732 |
| DOI: | 10.1016/j.jde.2016.09.036 |