Inverse source problem for the hyperbolic equation with a time-dependent principal part

In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Differential Equations Ročník 262; číslo 1; s. 653 - 681
Hlavní autoři: Jiang, Daijun, Liu, Yikan, Yamamoto, Masahiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 05.01.2017
Témata:
ISSN:0022-0396, 1090-2732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of partial boundary and interior observation data. Numerically, we adopt the classical Tikhonov regularization to reformulate the inverse problem into a related optimization problem, for which we develop an iterative thresholding algorithm by using the corresponding adjoint system. Numerical examples up to three spatial dimensions are presented to demonstrate the accuracy and efficiency of the proposed algorithm.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2016.09.036