Inverse source problem for the hyperbolic equation with a time-dependent principal part
In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of...
Gespeichert in:
| Veröffentlicht in: | Journal of Differential Equations Jg. 262; H. 1; S. 653 - 681 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
05.01.2017
|
| Schlagworte: | |
| ISSN: | 0022-0396, 1090-2732 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of partial boundary and interior observation data. Numerically, we adopt the classical Tikhonov regularization to reformulate the inverse problem into a related optimization problem, for which we develop an iterative thresholding algorithm by using the corresponding adjoint system. Numerical examples up to three spatial dimensions are presented to demonstrate the accuracy and efficiency of the proposed algorithm. |
|---|---|
| ISSN: | 0022-0396 1090-2732 |
| DOI: | 10.1016/j.jde.2016.09.036 |