Inverse source problem for the hyperbolic equation with a time-dependent principal part

In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations Jg. 262; H. 1; S. 653 - 681
Hauptverfasser: Jiang, Daijun, Liu, Yikan, Yamamoto, Masahiro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 05.01.2017
Schlagworte:
ISSN:0022-0396, 1090-2732
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the inverse problem on determining the spatial component of the source term in the hyperbolic equation with a time-dependent principal part. Based on a Carleman estimate for general hyperbolic operators, we prove a local stability result of Hölder type in both cases of partial boundary and interior observation data. Numerically, we adopt the classical Tikhonov regularization to reformulate the inverse problem into a related optimization problem, for which we develop an iterative thresholding algorithm by using the corresponding adjoint system. Numerical examples up to three spatial dimensions are presented to demonstrate the accuracy and efficiency of the proposed algorithm.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2016.09.036