Distributed Memory Algorithms for Weight Cancellation in Monte Carlo Particle Transport Simulations

Recent literature has demonstrated use cases for Monte Carlo transport simulations where particles can have statistical weights that are positive or negative. There are even examples which require particles to have complex statistical weights, and the real and imaginary components can be positive or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EPJ Web of conferences Ročník 302; s. 9007
Hlavní autoři: Grablevsky, Nicholas, Belanger, Hunter
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Les Ulis EDP Sciences 01.01.2024
Témata:
ISSN:2100-014X, 2101-6275, 2100-014X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent literature has demonstrated use cases for Monte Carlo transport simulations where particles can have statistical weights that are positive or negative. There are even examples which require particles to have complex statistical weights, and the real and imaginary components can be positive or negative. In such cases, weight cancellation algorithms can be very efficient at reducing the variance, or might even be required for a simulation to converge. Previous works that have employed weight cancellation in distributed memory simulations required that all fission particles be sent to a single node for the cancellation operation. This work examines possible implementations of distributed memory weight cancellation algorithms that do not require the transfer of the fission source to a single node.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202430209007