Out-of-Sample Extension of the Fuzzy Transform

This paper addresses the definition and computation of the out-of-sample membership functions and the resulting outof-sample FT, which extend their discrete counterparts to the continuous case. Through the out-of-sample FT, we introduce a coherent analysis of the discrete and continuous FTs, which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems Jg. 32; H. 3; S. 1 - 10
1. Verfasser: Patane, Giuseppe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-6706, 1941-0034
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the definition and computation of the out-of-sample membership functions and the resulting outof-sample FT, which extend their discrete counterparts to the continuous case. Through the out-of-sample FT, we introduce a coherent analysis of the discrete and continuous FTs, which is applied to extrapolate the behaviour of the FT on new data and to achieve an accurate approximation of the continuous FT of signals on arbitrary data. To this end, we apply either an approximated approach, which considers the link between integral kernels and the spectrum of the corresponding Gram matrix, or an interpolation of the discrete kernel eigenfunctions with radial basis functions. In this setting, we show the generality of the proposed approach to the input data (e.g., graphs, 3D domains) and signal reconstruction
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2023.3326657