Gröbner bases and the number of Latin squares related to autotopisms of order ≤7

Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 42; H. 11; S. 1142 - 1154
Hauptverfasser: Falcón, R.M., Martín-Morales, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2007
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
AbstractList Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
Author Falcón, R.M.
Martín-Morales, J.
Author_xml – sequence: 1
  givenname: R.M.
  surname: Falcón
  fullname: Falcón, R.M.
  email: rafalgan@us.es
  organization: Department of Geometry and Topology, University of Seville, Avda. Reina Mercedes s/n - 41080, Seville, Spain
– sequence: 2
  givenname: J.
  surname: Martín-Morales
  fullname: Martín-Morales, J.
  email: jorge@unizar.es
  organization: Department of Mathematics, University of Zaragoza, C/ Pedro Cerbuna, 12 - 50009, Zaragoza, Spain
BookMark eNp9kFFKxDAQhoOs4O7qAXzrBVonbdq0-CSLrsKCDyr4FpJ0iim7yZpkBY_gPTyDF_AmnsSW9cmHhYGBmf8b_vlnZGKdRULOKWQUaHXRZ33QWQ7As7GAHZEphaZM67J8npApcMZTTjk9IbMQegBoWFFOycPSf38piz5RMmBIpG2T-IKJ3W3UMHRdspLR2CS87qQf9h7XMuKgcYncRRfd1oRNGHXOtwPw8_HJT8lxJ9cBz_76nDzdXD8ubtPV_fJucbVKdcEgpqrjuVKqoLoroWRtPTqCslEoeVU2uq0YpbzjulE1Y9hC3daIOtc11FXe5cWc8P1d7V0IHjuhTRzcOhu9NGtBQYzZiF4M2YgxGzEWsIGk_8itNxvp3w8yl3sGh5feDHoRtEGrsTUedRStMwfoXyjxgME
CitedBy_id crossref_primary_10_2989_16073606_2018_1502214
crossref_primary_10_1007_s10444_018_9654_0
crossref_primary_10_1016_j_matcom_2014_12_002
crossref_primary_10_3390_sym10080322
crossref_primary_10_1016_j_disc_2010_06_027
crossref_primary_10_1016_j_jsc_2010_10_011
crossref_primary_10_1002_cmm4_1094
crossref_primary_10_1002_jcd_20309
crossref_primary_10_1145_3412324
crossref_primary_10_3390_math9060666
crossref_primary_10_1016_j_disc_2017_01_002
crossref_primary_10_1002_mma_4820
crossref_primary_10_1016_j_disc_2011_11_013
crossref_primary_10_1016_j_ejc_2013_02_005
crossref_primary_10_1016_j_disc_2020_111812
crossref_primary_10_1016_j_ejc_2015_02_022
Cites_doi 10.1016/j.jsc.2005.09.007
10.1090/S0002-9947-1943-0009962-7
10.1090/S0002-9947-1944-0009963-X
10.1002/jcd.20105
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jsc.2007.07.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-855X
EndPage 1154
ExternalDocumentID 10_1016_j_jsc_2007_07_004
S0747717107001009
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-bf72bbb31cf5054d89435059bea7659cd64117f7c9b844ed08d8eec2c80862f23
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252046200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-7171
IngestDate Sat Nov 29 02:50:56 EST 2025
Tue Nov 18 21:45:37 EST 2025
Fri Feb 23 02:31:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Gröbner basis
Autotopism group
Latin square
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-bf72bbb31cf5054d89435059bea7659cd64117f7c9b844ed08d8eec2c80862f23
OpenAccessLink https://dx.doi.org/10.1016/j.jsc.2007.07.004
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jsc_2007_07_004
crossref_primary_10_1016_j_jsc_2007_07_004
elsevier_sciencedirect_doi_10_1016_j_jsc_2007_07_004
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of symbolic computation
PublicationYear 2007
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Albert (b2) 1943; 54
Falcón, R.M., 2006. Latin squares associated to principal autotopisms of long cycles. Application in Cryptography. In: Proceedings of Transgressive Computing 2006: A Conference in Honor of Jean Della Dora. Granada. pp. 213–230
Bruck (b4) 1944; 55
Falcón, R.M., 2007. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combinatoria (in press).
Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. Thesis. University of Innsbruck. English translation 2006: An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal. (Logic, mathematics, and computer science: Interactions). Journal of Symbolic Computation. 41 (3–4), 475–511 (special issue)
Laywine, Mullen (b11) 1998
Greuel, G.-M., Pfister, G., Schönemann, H., 2005.
Adams, Loustaunau (b1) 1994; vol. 3
McKay, Meynert, Myrvold (b13) 2007; 15
Gago-Vargas, Hartillo-Hermoso, Martín-Morales, Ucha-Enríquez (b9) 2006; vol. 4194
Bayer, D., 1982. The division algorithm and the Hilbert scheme. Ph. D. Thesis. Harvard University
Cox, Little, O’Shea (b6) 1997
3.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserlautern.
Martín-Morales, J., 2006. Sudoku and Gröbner bases. In: Proceedings of Transgressive Computing 2006: A Conference in Honor of Jean Della Dora. Granada. pp. 303–310
Bruck (10.1016/j.jsc.2007.07.004_b4) 1944; 55
McKay (10.1016/j.jsc.2007.07.004_b13) 2007; 15
Gago-Vargas (10.1016/j.jsc.2007.07.004_b9) 2006; vol. 4194
10.1016/j.jsc.2007.07.004_b3
10.1016/j.jsc.2007.07.004_b5
Albert (10.1016/j.jsc.2007.07.004_b2) 1943; 54
10.1016/j.jsc.2007.07.004_b8
10.1016/j.jsc.2007.07.004_b7
Cox (10.1016/j.jsc.2007.07.004_b6) 1997
10.1016/j.jsc.2007.07.004_b12
Adams (10.1016/j.jsc.2007.07.004_b1) 1994; vol. 3
10.1016/j.jsc.2007.07.004_b10
Laywine (10.1016/j.jsc.2007.07.004_b11) 1998
References_xml – reference: Martín-Morales, J., 2006. Sudoku and Gröbner bases. In: Proceedings of Transgressive Computing 2006: A Conference in Honor of Jean Della Dora. Granada. pp. 303–310
– reference: Falcón, R.M., 2007. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combinatoria (in press).
– reference: Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. Thesis. University of Innsbruck. English translation 2006: An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal. (Logic, mathematics, and computer science: Interactions). Journal of Symbolic Computation. 41 (3–4), 475–511 (special issue)
– reference: Falcón, R.M., 2006. Latin squares associated to principal autotopisms of long cycles. Application in Cryptography. In: Proceedings of Transgressive Computing 2006: A Conference in Honor of Jean Della Dora. Granada. pp. 213–230
– volume: 15
  start-page: 98
  year: 2007
  end-page: 119
  ident: b13
  article-title: Small Latin squares, quasigroups and loops
  publication-title: Journal of Combinatorial Designs
– reference: 3.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserlautern.
– reference: Bayer, D., 1982. The division algorithm and the Hilbert scheme. Ph. D. Thesis. Harvard University
– year: 1997
  ident: b6
  article-title: Ideals, Varieties and Algorithms
– volume: 55
  start-page: 19
  year: 1944
  end-page: 54
  ident: b4
  article-title: Some results in the theory of quasigroups
  publication-title: Transactions of the American Mathematical Society
– year: 1998
  ident: b11
  publication-title: Discrete Mathematics Using Latin Squares
– volume: vol. 3
  year: 1994
  ident: b1
  publication-title: An Introduction to Gröbner Bases
– volume: vol. 4194
  start-page: 155
  year: 2006
  end-page: 165
  ident: b9
  article-title: Sudokus and Gröbner bases not only a divertimento
  publication-title: CASC 2006
– volume: 54
  start-page: 507
  year: 1943
  end-page: 519
  ident: b2
  article-title: Quasigroups I
  publication-title: Transactions of the American Mathematical Society
– reference: Greuel, G.-M., Pfister, G., Schönemann, H., 2005.
– ident: 10.1016/j.jsc.2007.07.004_b3
– ident: 10.1016/j.jsc.2007.07.004_b8
– ident: 10.1016/j.jsc.2007.07.004_b7
– volume: vol. 4194
  start-page: 155
  year: 2006
  ident: 10.1016/j.jsc.2007.07.004_b9
  article-title: Sudokus and Gröbner bases not only a divertimento
– ident: 10.1016/j.jsc.2007.07.004_b10
– year: 1998
  ident: 10.1016/j.jsc.2007.07.004_b11
– ident: 10.1016/j.jsc.2007.07.004_b12
– volume: vol. 3
  year: 1994
  ident: 10.1016/j.jsc.2007.07.004_b1
– ident: 10.1016/j.jsc.2007.07.004_b5
  doi: 10.1016/j.jsc.2005.09.007
– year: 1997
  ident: 10.1016/j.jsc.2007.07.004_b6
– volume: 54
  start-page: 507
  year: 1943
  ident: 10.1016/j.jsc.2007.07.004_b2
  article-title: Quasigroups I
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-1943-0009962-7
– volume: 55
  start-page: 19
  year: 1944
  ident: 10.1016/j.jsc.2007.07.004_b4
  article-title: Some results in the theory of quasigroups
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-1944-0009963-X
– volume: 15
  start-page: 98
  year: 2007
  ident: 10.1016/j.jsc.2007.07.004_b13
  article-title: Small Latin squares, quasigroups and loops
  publication-title: Journal of Combinatorial Designs
  doi: 10.1002/jcd.20105
SSID ssj0009435
Score 1.8979979
Snippet Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1142
SubjectTerms Autotopism group
Gröbner basis
Latin square
Title Gröbner bases and the number of Latin squares related to autotopisms of order ≤7
URI https://dx.doi.org/10.1016/j.jsc.2007.07.004
Volume 42
WOSCitedRecordID wos000252046200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-855X
  dateEnd: 20180228
  omitProxy: false
  ssIdentifier: ssj0009435
  issn: 0747-7171
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5FKQculF9RCmgPcCFyZDsb7_oYoC1UtEKiSLlZ3vVaSpTawXaqwhv0PfoMvABvwpMw-xe7VYroAcmyLMvrv_k0M7sz8w1Cr4KMhVwG0qMC3DewENRLhZ96OeAp4iQUPNfs-p_o8TGbTuPPvd4PVwtztqBFwc7P4-V_FTWcA2Gr0tlbiHt9UzgBxyB02IPYYf9Pgj_Qwe-3ES9kNVBGql5nSZr2HyYs0MyKQf1tpcqPTEELeJ7gh6arpmzK5aw-1TkemplzoDMi4tcTw1q5wZetv59yRTCsM9RXV6P7--lC6Dcamen-8GjYLoNXjY7Uvy-8I0UVYHTW4fDKWgS1RXmtyoLJiQcTxKCrX0nYxVHg2bRpozBVKW_H-CpyoI2K3awxzIfz2vFOKupJ0loxF7m_ZtzWKYcum22ewC1U802aqE1RyW6FdByzPtqafNybHraUzcS0Z3Xf5GLiOjvw2nts9mo6nsrJfXTPigVPDDQeoJ4sHqJt174DW23-CH05qH79VCjBGiUYUIIBJdigBJc51ijBFiXYogQ3Je6gRF2nUYJ_X1zSx-jr_t7Juw-e7bHhiRHxG4_nNOScjwKRgy9MMkXHDwcxlymNxrHIIhIENKci5owQmfksY1KKUDA1F87D0RPUL8pCPkVYCDrOfB6xTMIgmsUwFpxrwlkuUyLZDvLdP0qEJaBXfVAWyY2y2UFv1kOWhn3lbxcT9-MT6z4atzABEN087NltnrGL7ra4f476TbWSL9AdcdbM6uqlRdAfVk-NKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gr%C3%B6bner+bases+and+the+number+of+Latin+squares+related+to+autotopisms+of+order+%E2%89%A47&rft.jtitle=Journal+of+symbolic+computation&rft.au=Falc%C3%B3n%2C+R.M.&rft.au=Mart%C3%ADn-Morales%2C+J.&rft.date=2007-11-01&rft.issn=0747-7171&rft.volume=42&rft.issue=11-12&rft.spage=1142&rft.epage=1154&rft_id=info:doi/10.1016%2Fj.jsc.2007.07.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2007_07_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon