Deep-Learning-Based 3-D Surface Reconstruction-A Survey

In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Ročník 111; číslo 11; s. 1464 - 1501
Hlavní autori: Farshian, Anis, Gotz, Markus, Cavallaro, Gabriele, Debus, Charlotte, Niesner, Matthias, Benediktsson, Jon Atli, Streit, Achim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9219, 1558-2256
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input, is of great interest to a large variety of application fields. DL-based approaches show promising quantitative and qualitative surface reconstruction performance compared to traditional computer vision and geometric algorithms. This survey provides a comprehensive overview of these DL-based methods for 3-D surface reconstruction. To this end, we will first discuss input data modalities, such as volumetric data, point clouds, and RGB, single-view, multiview, and depth images, along with corresponding acquisition technologies and common benchmark datasets. For practical purposes, we also discuss evaluation metrics enabling us to judge the reconstructive performance of different methods. The main part of the document will introduce a methodological taxonomy ranging from point- and mesh-based techniques to volumetric and implicit neural approaches. Recent research trends, both methodological and for applications, are highlighted, pointing toward future developments.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2023.3321433