Combinative model compression approach for enhancing 1D CNN efficiency for EIT-based Hand Gesture Recognition on IoT edge devices

Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices. This paper investigates model compression techniques with the aim of determining their compatibility when combined, and identifying an effective approach to improve inference speed and energ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Internet of things (Amsterdam. Online) Ročník 28; s. 101403
Hlavní autori: Mnif, Mahdi, Sahnoun, Salwa, Ben Saad, Yasmine, Fakhfakh, Ahmed, Kanoun, Olfa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2024
Predmet:
ISSN:2542-6605, 2542-6605
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices. This paper investigates model compression techniques with the aim of determining their compatibility when combined, and identifying an effective approach to improve inference speed and energy efficiency within IoT edge devices. The study is carried out on the application scenario of Hand Gesture Recognition (HGR) based on Electrical Impedance Tomography (EIT), which involves complex signal processing and needs real-time processing and energy efficiency. Therefore, a customized 1-Dimensional Convolutional Neural Network (1D CNN) HGR classification model has been designed. An approach based on strategically combining model compression techniques was then implemented resulting in a model customized for faster inference and improved energy efficiency for IoT embedded devices. The model size became compact at 10.42 kB, resulting in a substantial size reduction of 98.8%, and an inference gain of 94.73% on a personal computer with approximately 8.56% decrease in accuracy. The approach of combinative model compression techniques was applied to a wide range of edge-computing IoT devices with limited processing power, resulting in a significant improvement in model execution speed and energy efficiency for these devices. Specifically, there was an average power consumption gain of 52% for Arduino Nano BLE and 34.05% for Raspberry Pi 4. Inference time was halved for Arduino Nano BLE Sense, Nicla Sense, and Raspberry Pi 4, with a remarkable gain of 94% for ESP32.
AbstractList Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices. This paper investigates model compression techniques with the aim of determining their compatibility when combined, and identifying an effective approach to improve inference speed and energy efficiency within IoT edge devices. The study is carried out on the application scenario of Hand Gesture Recognition (HGR) based on Electrical Impedance Tomography (EIT), which involves complex signal processing and needs real-time processing and energy efficiency. Therefore, a customized 1-Dimensional Convolutional Neural Network (1D CNN) HGR classification model has been designed. An approach based on strategically combining model compression techniques was then implemented resulting in a model customized for faster inference and improved energy efficiency for IoT embedded devices. The model size became compact at 10.42 kB, resulting in a substantial size reduction of 98.8%, and an inference gain of 94.73% on a personal computer with approximately 8.56% decrease in accuracy. The approach of combinative model compression techniques was applied to a wide range of edge-computing IoT devices with limited processing power, resulting in a significant improvement in model execution speed and energy efficiency for these devices. Specifically, there was an average power consumption gain of 52% for Arduino Nano BLE and 34.05% for Raspberry Pi 4. Inference time was halved for Arduino Nano BLE Sense, Nicla Sense, and Raspberry Pi 4, with a remarkable gain of 94% for ESP32.
ArticleNumber 101403
Author Fakhfakh, Ahmed
Ben Saad, Yasmine
Sahnoun, Salwa
Mnif, Mahdi
Kanoun, Olfa
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0009-0002-0294-0154
  surname: Mnif
  fullname: Mnif, Mahdi
  organization: National School of Electronics and Telecommunications of Sfax, University of Sfax, Tunisia
– sequence: 2
  givenname: Salwa
  surname: Sahnoun
  fullname: Sahnoun, Salwa
  organization: National School of Electronics and Telecommunications of Sfax, University of Sfax, Tunisia
– sequence: 3
  givenname: Yasmine
  surname: Ben Saad
  fullname: Ben Saad, Yasmine
  organization: National School of Electronics and Telecommunications of Sfax, University of Sfax, Tunisia
– sequence: 4
  givenname: Ahmed
  surname: Fakhfakh
  fullname: Fakhfakh, Ahmed
  organization: Laboratory of Signals, Systems, Artificial Intelligence and Networks (SM@RTS), Digital Research Center of Sfax (CRNS), Tunisia
– sequence: 5
  givenname: Olfa
  orcidid: 0000-0002-7166-1266
  surname: Kanoun
  fullname: Kanoun, Olfa
  email: olfa.kanoun@etit.tu-chemnitz.de
  organization: Measurements and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, Germany
BookMark eNp9kM1KAzEQgIMoWGsfwFteYGuy_8WTrLUtlAqy95CfSZvSTZZkLfTom7vbehAPhcBkmPmGme8B3VpnAaEnSqaU0Px5PzWum8YkToc8JckNGsVZGkd5TrLbP_97NAlhTwiJZ3kSJ8UIfVeuEcbyzhwBN07BAUvXtB5CMM5i3rbecbnD2nkMdsetNHaL6RuuNhsMWhtpwMrTuT5f1ZHgARRecqvwAkL35QF_gnRba7phXv9WrsagtoAVHI2E8IjuND8EmPzGMarf53W1jNYfi1X1uo5kkpIuEmLG06yYJZATXoo0K4sikVqVgmazgotcE0myolQCaFxklKRKyb431UITgGSMistY6V0IHjSTpuPDUp3n5sAoYYNLtme9Sza4ZBeXPUn_ka03Dfenq8zLhYH-oqMBz8JZFCjjQXZMOXOF_gHuiY-K
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3545827
crossref_primary_10_3390_s25020475
Cites_doi 10.1145/3555802
10.1007/s13042-022-01530-w
10.1109/JSEN.2021.3130982
10.1007/s44196-024-00518-4
10.1016/j.ergon.2017.02.004
10.3390/jimaging6080073
10.1145/3665278
10.1109/ICIP.2017.8297033
10.1109/ACCESS.2023.3294111
10.51594/csitrj.v5i3.929
10.1109/MCAS.2020.3005467
10.1007/s10209-021-00823-1
10.1109/JSTSP.2022.3222910
10.1145/3180155.3180220
10.1109/ACCESS.2021.3081353
10.3390/s24030920
10.1109/TWC.2024.3435017
10.1007/s10489-020-01894-y
10.3390/s21217298
10.3390/computers11020026
10.1109/ACCESS.2020.2991734
10.1109/ICIP.2018.8451766
10.3389/fnbot.2021.659311
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.iot.2024.101403
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2542-6605
ExternalDocumentID 10_1016_j_iot_2024_101403
S2542660524003445
GroupedDBID 0R~
6I.
AACTN
AAEDW
AAFTH
AAKOC
AALRI
AAQFI
AAXUO
AAYFN
ABMAC
ACDAQ
ACHRH
ACRLP
AEBSH
AFJKZ
AFKWA
AFTJW
AGUBO
AGUMN
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOUOD
AXJTR
BELTK
BJAXD
BKOJK
EBS
EFJIC
EJD
FDB
KOM
M41
ROL
SPC
SPCBC
SSB
SSL
SSR
SST
SSV
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
FYGXN
ID FETCH-LOGICAL-c340t-bb9a45793e60a8b458773cfd8b1597ab6f0c0578dbe1275104ddce604fbf0ee3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2542-6605
IngestDate Sat Nov 29 05:26:39 EST 2025
Tue Nov 18 22:25:53 EST 2025
Wed Dec 04 16:48:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords EIT
Tiny ML
Hand Gesture Recognition
Lightweight models
IoT devices
Energy efficiency
Inference time
1D CNN
Model compression techniques
Edge computing
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-bb9a45793e60a8b458773cfd8b1597ab6f0c0578dbe1275104ddce604fbf0ee3
ORCID 0000-0002-7166-1266
0009-0002-0294-0154
OpenAccessLink https://dx.doi.org/10.1016/j.iot.2024.101403
ParticipantIDs crossref_citationtrail_10_1016_j_iot_2024_101403
crossref_primary_10_1016_j_iot_2024_101403
elsevier_sciencedirect_doi_10_1016_j_iot_2024_101403
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Internet of things (Amsterdam. Online)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Ding, Feng, Lu, Zheng, Zhao, Meng (b10) 2022; 17
Mnif, Atitallah, El Houssaini, Sahnoun, Fakhfakh, Kanoun (b1) 2022
Liu, Fang, Zhao, Wang, Zhang (b37) 2015
Kumar, Shaikh, Li, Bilal, Yin (b40) 2021; 51
Geng, Niu (b28) 2024; 17
Oudah, Al-Naji, Chahl (b17) 2020; 6
Z. Ni, J. Chen, N. Sang, C. Gao, L. Liu, Light YOLO for high-speed gesture recognition, in: 2018 25th IEEE International Conference on Image Processing, ICIP, 2018, pp. 3099–3103.
Hua, Li, Wang, Dong, Li, Cao (b7) 2023; 55
He, Xiao (b27) 2023
Kahlon, Singh (b20) 2023; 22
Li, Zhang, Cao (b23) 2022
Cao, Liu, Meng, Sun (b8) 2020; 8
Modupe, Otitoola, Oladapo, Abiona, Oyeniran, Adewusi (b9) 2024; 5
Li, Kadav, Durdanovic, Samet, Graf (b29) 2016
Yuan, Liu, Wu, Yang, Wu, Sun (b30) 2023
Liu, Wang (b16) 2018; 68
Chmurski, Zubert, Bierzynski, Santra (b4) 2021
Zhu, Li, Liu, Ma, Wang (b26) 2023
Atitallah, Hu, Bouchaala, Hussain, Ismail, Derbel, Kanoun (b34) 2021; 22
Abadade, Temouden, Bamoumen, Benamar, Chtouki, Hafid (b15) 2023
Ren, Anicic, Li, Runkler (b14) 2024; 23
K. Mullick, A.M. Namboodiri, Learning deep and compact models for gesture recognition, in: 2017 IEEE International Conference on Image Processing, ICIP, 2017, pp. 3998–4002.
Ding, Zhang, Lu, Zhao, Nallanathan, Wang, Yang (b11) 2024
Wu (b38) 2017; vol. 5
Yao, Wang, Xia, Guo, Liu, Han (b19) 2024; 24
Shen, Xia, Cai, Zhang, Zhan (b24) 2023
Li, Wu, Su, Wang (b25) 2020; vol. 16
Wu, Yao, Zhang, Li, He (b32) 2022; 35
Kuang, Shao, Wang, Zuo, Ding (b39) 2022; 13
Ha, Withanachchi, Yihun (b18) 2018; 40789
Leins, Gibas, Brück, Haschke (b35) 2021; 15
Sanchez-Iborra, Skarmeta (b13) 2020; 20
Yao, Yazdani Aminabadi, Zhang, Wu, Li, He (b31) 2022; 35
Chmurski, Mauro, Santra, Zubert, Dagasan (b6) 2021; 21
Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated testing of deep-neural-network-driven autonomous cars, in: The 40th International Conference on Software Engineering, 2018, pp. 303–314.
Mohandas, Bhattacharya, Penica, Van Camp, Hayes (b33) 2020
Warden, Situnayake (b12) 2019
S. (b36) 2015
Yu, de Antonio, Villalba-Mora (b2) 2022; 11
Venzke, Klisch, Kubik, Ali, Missier, Turau (b5) 2020
Cao (10.1016/j.iot.2024.101403_b8) 2020; 8
Ding (10.1016/j.iot.2024.101403_b11) 2024
Venzke (10.1016/j.iot.2024.101403_b5) 2020
Chmurski (10.1016/j.iot.2024.101403_b6) 2021; 21
Ding (10.1016/j.iot.2024.101403_b10) 2022; 17
Hua (10.1016/j.iot.2024.101403_b7) 2023; 55
Warden (10.1016/j.iot.2024.101403_b12) 2019
10.1016/j.iot.2024.101403_b22
Ren (10.1016/j.iot.2024.101403_b14) 2024; 23
10.1016/j.iot.2024.101403_b21
10.1016/j.iot.2024.101403_b3
Leins (10.1016/j.iot.2024.101403_b35) 2021; 15
Geng (10.1016/j.iot.2024.101403_b28) 2024; 17
Ha (10.1016/j.iot.2024.101403_b18) 2018; 40789
Zhu (10.1016/j.iot.2024.101403_b26) 2023
Li (10.1016/j.iot.2024.101403_b25) 2020; vol. 16
Wu (10.1016/j.iot.2024.101403_b38) 2017; vol. 5
Wu (10.1016/j.iot.2024.101403_b32) 2022; 35
Abadade (10.1016/j.iot.2024.101403_b15) 2023
S. (10.1016/j.iot.2024.101403_b36) 2015
Modupe (10.1016/j.iot.2024.101403_b9) 2024; 5
He (10.1016/j.iot.2024.101403_b27) 2023
Li (10.1016/j.iot.2024.101403_b23) 2022
Chmurski (10.1016/j.iot.2024.101403_b4) 2021
Sanchez-Iborra (10.1016/j.iot.2024.101403_b13) 2020; 20
Yao (10.1016/j.iot.2024.101403_b19) 2024; 24
Kahlon (10.1016/j.iot.2024.101403_b20) 2023; 22
Oudah (10.1016/j.iot.2024.101403_b17) 2020; 6
Atitallah (10.1016/j.iot.2024.101403_b34) 2021; 22
Yao (10.1016/j.iot.2024.101403_b31) 2022; 35
Mnif (10.1016/j.iot.2024.101403_b1) 2022
Yu (10.1016/j.iot.2024.101403_b2) 2022; 11
Liu (10.1016/j.iot.2024.101403_b37) 2015
Liu (10.1016/j.iot.2024.101403_b16) 2018; 68
Kumar (10.1016/j.iot.2024.101403_b40) 2021; 51
Yuan (10.1016/j.iot.2024.101403_b30) 2023
Li (10.1016/j.iot.2024.101403_b29) 2016
Mohandas (10.1016/j.iot.2024.101403_b33) 2020
Kuang (10.1016/j.iot.2024.101403_b39) 2022; 13
Shen (10.1016/j.iot.2024.101403_b24) 2023
References_xml – volume: 17
  start-page: 54
  year: 2022
  end-page: 65
  ident: b10
  article-title: Online edge learning offloading and resource management for UAV-assisted MEC secure communications
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– year: 2023
  ident: b30
  article-title: Benchmarking the reliability of post-training quantization: a particular focus on worst-case performance
– year: 2023
  ident: b24
  article-title: Real-time gesture detection in complex multi-person scenarios
– volume: 22
  start-page: 1729
  year: 2021
  end-page: 1737
  ident: b34
  article-title: Hand sign recognition system based on EIT imaging and robust CNN classification
  publication-title: IEEE Sens. J.
– year: 2023
  ident: b26
  article-title: A survey on model compression for large language models
– volume: 51
  start-page: 1152
  year: 2021
  end-page: 1160
  ident: b40
  article-title: Pruning filters with L1-norm and capped L1-norm for CNN compression
  publication-title: Appl. Intell.
– reference: Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated testing of deep-neural-network-driven autonomous cars, in: The 40th International Conference on Software Engineering, 2018, pp. 303–314.
– volume: 8
  start-page: 85714
  year: 2020
  end-page: 85728
  ident: b8
  article-title: An overview on edge computing research
  publication-title: IEEE Access
– volume: vol. 16
  start-page: 639
  year: 2020
  end-page: 654
  ident: b25
  article-title: Eagleeye: Fast sub-net evaluation for efficient neural network pruning
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August (2020) 23–28, Proceedings, Part II
– year: 2023
  ident: b27
  article-title: Structured pruning for deep convolutional neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: b12
  article-title: TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers
– volume: 6
  start-page: 73
  year: 2020
  ident: b17
  article-title: Hand gesture recognition based on computer vision: a review of techniques
  publication-title: J. Imaging
– start-page: 74406
  year: 2021
  end-page: 74421
  ident: b4
  article-title: Analysis of edge-optimized deep learning classifiers for radar-based gesture recognition
  publication-title: IEEE Access
– volume: 35
  start-page: 3217
  year: 2022
  end-page: 3231
  ident: b32
  article-title: Xtc: Extreme compression for pre-trained transformers made simple and efficient
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 5
  start-page: 495
  year: 2017
  ident: b38
  article-title: Introduction to convolutional neural networks
  publication-title: National Key Lab for Novel Software Technology
– volume: 68
  start-page: 355
  year: 2018
  end-page: 367
  ident: b16
  article-title: Gesture recognition for human–robot collaboration: A review
  publication-title: Int. J. Ind. Ergon.
– volume: 35
  start-page: 27168
  year: 2022
  end-page: 27183
  ident: b31
  article-title: Efficient and affordable post-training quantization for large-scale transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 2403
  year: 2022
  end-page: 2414
  ident: b39
  article-title: Network pruning via probing the importance of filters
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 5
  start-page: 693
  year: 2024
  end-page: 702
  ident: b9
  article-title: Reviewing the transformational impact of edge computing on real-time data processing and analytics
  publication-title: Comput. Sci. IT Res. J.
– reference: Z. Ni, J. Chen, N. Sang, C. Gao, L. Liu, Light YOLO for high-speed gesture recognition, in: 2018 25th IEEE International Conference on Image Processing, ICIP, 2018, pp. 3099–3103.
– year: 2022
  ident: b23
  article-title: MyoTac: Real-time recognition of tactical sign language based on lightweight deep neural network
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 17
  start-page: 1
  year: 2024
  end-page: 27
  ident: b28
  article-title: APSSF: Adaptive CNN pruning based on structural similarity of filters
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 24
  start-page: 920
  year: 2024
  ident: b19
  article-title: Effects of training and calibration data on surface electromyogram-based recognition for upper limb amputees
  publication-title: Sensors
– volume: 11
  start-page: 26
  year: 2022
  ident: b2
  article-title: Deep learning (CNN, RNN) applications for smart homes: a systematic review
  publication-title: Computers
– year: 2023
  ident: b15
  article-title: A comprehensive survey on tinyml
  publication-title: IEEE Access
– year: 2015
  ident: b37
  article-title: Implementation of training convolutional neural networks
– volume: 55
  start-page: 1
  year: 2023
  end-page: 35
  ident: b7
  article-title: Edge computing with artificial intelligence: A machine learning perspective
  publication-title: ACM Comput. Surv.
– volume: 15
  year: 2021
  ident: b35
  article-title: Toward more robust hand gesture recognition on EIT data
  publication-title: Front. Neurorobotics
– start-page: 857
  year: 2022
  end-page: 863
  ident: b1
  article-title: Design of a wearable multi-sensor node for human movement identification based on RSSI measurements
  publication-title: 19th International Multi-Conference on Systems, Signals & Devices
– volume: 21
  start-page: 7298
  year: 2021
  ident: b6
  article-title: Highly-optimized radar-based gesture recognition system with depthwise expansion module
  publication-title: Sensors
– volume: 20
  start-page: 4
  year: 2020
  end-page: 18
  ident: b13
  article-title: Tinyml-enabled frugal smart objects: Challenges and opportunities
  publication-title: IEEE Circuits Syst. Mag.
– year: 2016
  ident: b29
  article-title: Pruning filters for efficient convnets
– year: 2015
  ident: b36
  article-title: Instrumentierung der Bioimpedanzmessung: Optimierung mit Fokus auf die Elektroimpedanztomographie
– year: 2020
  ident: b5
  article-title: Artificial neural networks for sensor data classification on small embedded systems
– start-page: 157
  year: 2020
  end-page: 168
  ident: b33
  article-title: TensorFlow enabled deep learning model optimization for enhanced realtime person detection using raspberry pi operating at the edge
  publication-title: AICS
– volume: 22
  start-page: 1
  year: 2023
  end-page: 35
  ident: b20
  article-title: Machine translation from text to sign language: a systematic review
  publication-title: Univers. Access Inf. Soc.
– year: 2024
  ident: b11
  article-title: Collaborative communication and computation for secure UAV-enabled MEC against active aerial eavesdropping
  publication-title: IEEE Trans. Wireless Commun.
– volume: 23
  start-page: 1
  year: 2024
  end-page: 32
  ident: b14
  article-title: On-device online learning and semantic management of TinyML systems
  publication-title: ACM Trans. Embed. Comput. Syst.
– reference: K. Mullick, A.M. Namboodiri, Learning deep and compact models for gesture recognition, in: 2017 IEEE International Conference on Image Processing, ICIP, 2017, pp. 3998–4002.
– volume: 40789
  year: 2018
  ident: b18
  article-title: Force myography signal-based hand gesture classification for the implementation of real-time control system to a prosthetic hand
  publication-title: Front. Biomed. Dev.
– year: 2023
  ident: 10.1016/j.iot.2024.101403_b27
  article-title: Structured pruning for deep convolutional neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: vol. 5
  start-page: 495
  year: 2017
  ident: 10.1016/j.iot.2024.101403_b38
  article-title: Introduction to convolutional neural networks
– year: 2020
  ident: 10.1016/j.iot.2024.101403_b5
– volume: 55
  start-page: 1
  issue: 9
  year: 2023
  ident: 10.1016/j.iot.2024.101403_b7
  article-title: Edge computing with artificial intelligence: A machine learning perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3555802
– year: 2015
  ident: 10.1016/j.iot.2024.101403_b36
– year: 2015
  ident: 10.1016/j.iot.2024.101403_b37
– volume: 13
  start-page: 2403
  issue: 9
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b39
  article-title: Network pruning via probing the importance of filters
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01530-w
– volume: 22
  start-page: 1729
  issue: 2
  year: 2021
  ident: 10.1016/j.iot.2024.101403_b34
  article-title: Hand sign recognition system based on EIT imaging and robust CNN classification
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3130982
– year: 2023
  ident: 10.1016/j.iot.2024.101403_b26
– volume: 17
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.iot.2024.101403_b28
  article-title: APSSF: Adaptive CNN pruning based on structural similarity of filters
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-024-00518-4
– volume: 68
  start-page: 355
  year: 2018
  ident: 10.1016/j.iot.2024.101403_b16
  article-title: Gesture recognition for human–robot collaboration: A review
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2017.02.004
– volume: vol. 16
  start-page: 639
  year: 2020
  ident: 10.1016/j.iot.2024.101403_b25
  article-title: Eagleeye: Fast sub-net evaluation for efficient neural network pruning
– volume: 6
  start-page: 73
  issue: 8
  year: 2020
  ident: 10.1016/j.iot.2024.101403_b17
  article-title: Hand gesture recognition based on computer vision: a review of techniques
  publication-title: J. Imaging
  doi: 10.3390/jimaging6080073
– volume: 23
  start-page: 1
  issue: 4
  year: 2024
  ident: 10.1016/j.iot.2024.101403_b14
  article-title: On-device online learning and semantic management of TinyML systems
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/3665278
– ident: 10.1016/j.iot.2024.101403_b22
  doi: 10.1109/ICIP.2017.8297033
– year: 2023
  ident: 10.1016/j.iot.2024.101403_b15
  article-title: A comprehensive survey on tinyml
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3294111
– year: 2023
  ident: 10.1016/j.iot.2024.101403_b30
– volume: 5
  start-page: 693
  issue: 3
  year: 2024
  ident: 10.1016/j.iot.2024.101403_b9
  article-title: Reviewing the transformational impact of edge computing on real-time data processing and analytics
  publication-title: Comput. Sci. IT Res. J.
  doi: 10.51594/csitrj.v5i3.929
– volume: 20
  start-page: 4
  issue: 3
  year: 2020
  ident: 10.1016/j.iot.2024.101403_b13
  article-title: Tinyml-enabled frugal smart objects: Challenges and opportunities
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2020.3005467
– start-page: 157
  year: 2020
  ident: 10.1016/j.iot.2024.101403_b33
  article-title: TensorFlow enabled deep learning model optimization for enhanced realtime person detection using raspberry pi operating at the edge
  publication-title: AICS
– volume: 22
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.iot.2024.101403_b20
  article-title: Machine translation from text to sign language: a systematic review
  publication-title: Univers. Access Inf. Soc.
  doi: 10.1007/s10209-021-00823-1
– volume: 17
  start-page: 54
  issue: 1
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b10
  article-title: Online edge learning offloading and resource management for UAV-assisted MEC secure communications
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2022.3222910
– ident: 10.1016/j.iot.2024.101403_b3
  doi: 10.1145/3180155.3180220
– start-page: 74406
  year: 2021
  ident: 10.1016/j.iot.2024.101403_b4
  article-title: Analysis of edge-optimized deep learning classifiers for radar-based gesture recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3081353
– volume: 35
  start-page: 27168
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b31
  article-title: Efficient and affordable post-training quantization for large-scale transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 24
  start-page: 920
  issue: 3
  year: 2024
  ident: 10.1016/j.iot.2024.101403_b19
  article-title: Effects of training and calibration data on surface electromyogram-based recognition for upper limb amputees
  publication-title: Sensors
  doi: 10.3390/s24030920
– year: 2023
  ident: 10.1016/j.iot.2024.101403_b24
– start-page: 857
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b1
  article-title: Design of a wearable multi-sensor node for human movement identification based on RSSI measurements
– year: 2024
  ident: 10.1016/j.iot.2024.101403_b11
  article-title: Collaborative communication and computation for secure UAV-enabled MEC against active aerial eavesdropping
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2024.3435017
– year: 2022
  ident: 10.1016/j.iot.2024.101403_b23
  article-title: MyoTac: Real-time recognition of tactical sign language based on lightweight deep neural network
  publication-title: Wirel. Commun. Mob. Comput.
– year: 2019
  ident: 10.1016/j.iot.2024.101403_b12
– year: 2016
  ident: 10.1016/j.iot.2024.101403_b29
– volume: 51
  start-page: 1152
  year: 2021
  ident: 10.1016/j.iot.2024.101403_b40
  article-title: Pruning filters with L1-norm and capped L1-norm for CNN compression
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01894-y
– volume: 21
  start-page: 7298
  issue: 21
  year: 2021
  ident: 10.1016/j.iot.2024.101403_b6
  article-title: Highly-optimized radar-based gesture recognition system with depthwise expansion module
  publication-title: Sensors
  doi: 10.3390/s21217298
– volume: 35
  start-page: 3217
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b32
  article-title: Xtc: Extreme compression for pre-trained transformers made simple and efficient
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 26
  issue: 2
  year: 2022
  ident: 10.1016/j.iot.2024.101403_b2
  article-title: Deep learning (CNN, RNN) applications for smart homes: a systematic review
  publication-title: Computers
  doi: 10.3390/computers11020026
– volume: 8
  start-page: 85714
  year: 2020
  ident: 10.1016/j.iot.2024.101403_b8
  article-title: An overview on edge computing research
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991734
– volume: 40789
  year: 2018
  ident: 10.1016/j.iot.2024.101403_b18
  article-title: Force myography signal-based hand gesture classification for the implementation of real-time control system to a prosthetic hand
  publication-title: Front. Biomed. Dev.
– ident: 10.1016/j.iot.2024.101403_b21
  doi: 10.1109/ICIP.2018.8451766
– volume: 15
  year: 2021
  ident: 10.1016/j.iot.2024.101403_b35
  article-title: Toward more robust hand gesture recognition on EIT data
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2021.659311
SSID ssj0002963237
Score 2.3094146
Snippet Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices. This paper investigates model compression...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101403
SubjectTerms 1D CNN
Edge computing
EIT
Energy efficiency
Hand Gesture Recognition
Inference time
IoT devices
Lightweight models
Model compression techniques
Tiny ML
Title Combinative model compression approach for enhancing 1D CNN efficiency for EIT-based Hand Gesture Recognition on IoT edge devices
URI https://dx.doi.org/10.1016/j.iot.2024.101403
Volume 28
WOSCitedRecordID wos001350151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2542-6605
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002963237
  issn: 2542-6605
  databaseCode: AIEXJ
  dateStart: 20180901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RXtoDJyxHfiVeH6M2pUEoQiiHcLL2ZZI22VRtaHvtj-N_MbO7dkxpET0gJZa1sTeW59vZ2dmZbwh5L5jKY6nSMJWFCLOYw5hLRA5LFR4xkfQ5l5Zn9nM-mbDZrPjS6fysc2HOl7kx7PKyOPmvooY2EDamzt5B3E2n0ADnIHQ4gtjh-E-ChxEOq13H523r3NiwcRfuahoOcUf1beZIt2G-B_F-sDeZYHTHwg52F8Y5Gk9DnOZUcIj-9Y8wg-B-w9c66AhtTROM19MAvXKYgIVqp23vOoej3rhQBFsiFEza4QrpGRRf9YI21amTvFlULolorhaN_4fPDagl58JeXmydCBq0E3co_cbPVq0ggQN-PK_ga5XffOVzuLx_I8lasSJWDcIKNgkHg8jtfesb2rwe90nmThFjCWJLnvDnHOHcFUe9xRpjaZOst732dz7ua_NkE71YB8YdldBFiV2Urot7ZCfJ-wXrkp3heDT71Dj7ElBzieVvbZ683mG3sYbXHuVmG6ll90wfk0d-wUKHDmhPSEebp-Rhi8byGblqQY5ayNEW5GgNOQqQog3kaLxPAXJ0Czn7ewM5ipCjHnK0BTkKH4AcRchRD7nnZHowmu4dhr60RyjTLNqEQhQ868PcoAcRZyLrszxPZaWYAPM652JQRRJWEkwJjRUI4ihTSsK1WSWqSOv0BematdEvCY15VcD7rSSrGO7xw4KFacVxHiqUlvEuiep3WUpPe4_VV5blrWLcJR-aW04c58vfLs5qAZXeaHXGaAl4u_22V3f5j9fkwXZkvCHdzekP_Zbcl-ebxdnpOw-2X_Z7tvA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinative+model+compression+approach+for+enhancing+1D+CNN+efficiency+for+EIT-based+Hand+Gesture+Recognition+on+IoT+edge+devices&rft.jtitle=Internet+of+things+%28Amsterdam.+Online%29&rft.au=Mnif%2C+Mahdi&rft.au=Sahnoun%2C+Salwa&rft.au=Ben+Saad%2C+Yasmine&rft.au=Fakhfakh%2C+Ahmed&rft.date=2024-12-01&rft.issn=2542-6605&rft.eissn=2542-6605&rft.volume=28&rft.spage=101403&rft_id=info:doi/10.1016%2Fj.iot.2024.101403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iot_2024_101403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-6605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-6605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-6605&client=summon