Overdetermined elliptic problems in onduloid-type domains with general nonlinearities

In this paper, we prove the existence of nontrivial unbounded domains Ω⊂Rn+1,n≥1, bifurcating from the straight cylinder B×R (where B is the unit ball of Rn), such that the overdetermined elliptic problem{Δu+f(u)=0in Ω, u=0on ∂Ω, ∂νu=constanton ∂Ω,  has a positive bounded solution. We will prove suc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of functional analysis Ročník 283; číslo 12; s. 109705
Hlavní autori: Ruiz, David, Sicbaldi, Pieralberto, Wu, Jing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.12.2022
Predmet:
ISSN:0022-1236, 1096-0783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we prove the existence of nontrivial unbounded domains Ω⊂Rn+1,n≥1, bifurcating from the straight cylinder B×R (where B is the unit ball of Rn), such that the overdetermined elliptic problem{Δu+f(u)=0in Ω, u=0on ∂Ω, ∂νu=constanton ∂Ω,  has a positive bounded solution. We will prove such result for a very general class of functions f:[0,+∞)→R. Roughly speaking, we only ask that the Dirichlet problem in B admits a nondegenerate solution. The proof uses a local bifurcation argument.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109705